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Abstract. We present a theoretical review of the properties of electronic excitations in
nanostructures based on combinations of organic materials with inorganic semiconductors,
having respectively Frenkel excitons and Wannier—Mott excitons with nearly equal energies.
We show that in this case the resonant coupling between organic and inorganic quantum wells
(or wires or dots) may lead to several interesting effects, such as splitting of the excitonic
spectrum and enhancement of the resonant optical nonlinearities.

First, we discuss the properties of hybrid Frenkel-Wannier—Mott excitons, which appear
when the energy splitting of the excitonic spectrum is large compared to the width of the
exciton resonances (the case of strong resonant coupling). Such peculiar excitations share at
the same time both the properties of the Wannier excitons (e.g., the large radius) and those of
the Frenkel excitons (e.g., the large oscillator strength). We discuss mainly two-dimensional
configurations (interfaces or coupled quantum wells) which are the most extensively studied.
In particular, we show that hybrid excitons are expected to have resonant optical nonlinearities
significantly enhanced with respect to those of traditional inorganic or organic systems. We also
consider analogous phenomena in microcavities where the exciton resonances are close to the
cavity photon mode resonance.

Next, we consider the case of weak resonant coupling and show the relevance ofstes F
mechanism of energy transfer from an inorganic quantum well to an organic overlayer. Such an
effect may be especially interesting for applications: the electrical pumping of excitons in the
semiconductor quantum well can be used to efficiently turn on the organic material luminescence.

1. Introduction

The need for systems having better optoelectronic properties to be used in applications
has been driving researchers in materials science to develop novel compounds and novel
structures. The progress in the field has been impressive, mainly due to the use of
innovative growth techniques such as molecular beam epitaxy (MBE) and the realization of
systems in two-dimensional (2D), one-dimensional (1D) and zero-dimensional (OD) confined
geometries. We have now many newly developed organic or inorganic structures with very
interesting properties. We mention here as a typical example the quest for efficient second-
harmonic generation (SHG) where we can see a very peculiar ‘competition’ in the use of
organic or inorganic materials. Inorganic semiconductors (e.g., GaAlAs, ZnCdSe) have been
used to design MBE asymmetric quantum wells (QWSs) having valugg?imuch larger

than those of the corresponding bulk materials. Organic materials have also been used for
the same purpose: molecular charge-transfer excitations lead to a strong enhancement of
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SHG. From the theoretical point of view, scientists working independently with covalent or
molecular crystals have exploited actually the same basic idea, i.e. achieving a large change
of static dipole moment upon excitation. In the present paper, we discuss the possibility
of obtaining qualitatively new physical effects, potentially useful also for technological
applications, by ingeniously combining organic with inorganic materials in one and the
same hybrid structure.

The electronic excitations known as excitons play a fundamental role in the optical
properties of dielectric solids [1]. They correspond to a bound state of one electron and
one hole and can be created by light or can appear as a result of relaxation processes of
free electrons and holes, which, for example, may be injected electrically. There are two
models conventionally used to classify excitons—the small-radius Frenkel exciton model
and the large-radius Wannier—Mott exciton model. The internal structure of Wannier—Mott
excitons can be represented by hydrogen-like wavefunctions. Such a representation results
from the two-particle, Coulombic electron—hole states in a crystalline periodic potential.
The mean electron—hole distance for this type of exciton is typically large (in comparison
with the lattice constant). On the other hand, the Frenkel exciton is represented as an
electronic state of a crystal in which electrons and holes are placed on the same molecule.
We can say that Frenkel excitons in organic crystals have aadicomparable to the lattice
constant.ar ~ a ~ 5 A. In contrast, weakly bound Wannier excitons in §emiconductor
QWs have large Bohr radiiag ~ 100 A in 1=V materials andag ~ 30 A in 1I-VI
ones; in both casess > a). The oscillator strength of a Frenkel exciton is close to a
molecular oscillator strengtt¥, whereas the oscillator strength of a Wannier exciton
is usually much weaker: in a quantum well ~ a3a52L’1F where L is the QW width
(ag > L > a). Both types of exciton interact with lattice vibrations through exciton—phonon
coupling.

One of the main topics of our review is the optical nonlinearity due to exciton
resonances. In high-quality semiconductors as well as in organic crystalline materials,
the optical properties near and below the band gap are dominated by the exciton
transitions and this is also the case for organic and inorganic QWs (or wires or dots).
The excitonic optical nonlinearities in semiconductor QWs can be large because the
ideal-bosonic approximation for Wannier excitons breaks down as soon as they start
to overlap with each other, i.e., when their 2D densitybecomes comparable to
the saturation densitys ~ 1/(wa2) (ns is, typically, 13?2 cm™2). Then, due to
phase-space filling (PSF), exchange and collisional broadening, the exciton resonance is
bleached. However, a generic figure of merit for the optical nonlinearities scales like
I;l(AX/X) where Ay is the nonlinear change in the susceptibility in the presence of
a pump of intensitylp. As Ax/x ~ n/ns ~ na3, but alson o fIp agzlp,
such a figure of merit is nearly independent of the exciton Bohr radius [2]. As for
the Frenkel excitons in organic crystals, simply because they have small radii, they
have very large saturation density. Thus, pronounced PSF nonlinearities of the exciton
resonance in molecular crystals are practically impossible to achieve as very high excitonic
concentrations are needed. Of course, other mechanisms may effectively enhance the
optical nonlinearities of organic materials, but their discussion falls outside the scope of
this review.

Here we will consider hybrid structures in which Frenkel and Wannier excitons are
in resonance with each other and coupled through their dipole—dipole interaction at the
interface and through cavity photons in a microcavity. The basic idea is to realize the
formation of new eigenstates given by appropriate coherent linear combinations of large-
radius exciton states in the inorganic material and small-radius exciton states in the organic
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one. We can expect that these hybrid electronic excitations will be characterized by a
radius dominated by their Wannier component and by an oscillator strength dominated
by their Frenkel component. Thus, they can have at the same time a large oscillator
strength F and a small saturation densitys. In this way, the desirable properties

of both the inorganic and organic material unite and overcome the basic limitation
mentioned above for the figure of merit of the exciton resonance nonlinearities. One
of the most natural choices for implementing this idea is a layered structure with an
interface between a covalent semiconductor and a crystalline molecular semiconductor.
In such heterojunctions, there is obviously some cause for concern about the detrimental
effects that lack of material purity and structural quality would have on the formation and
the functional properties of the hybrid excitons. The realistic possibility of considering
such organic—inorganic crystalline structures has only recently arisen due to progress in
the development of the organic molecular beam deposition (OMBD) and other related
techniques. Such progress has led to a monolayer-level control in the growth of organic
thin films and superlattices with extremely high chemical purity and structural precision.
This opens up a wide range of possibilities in the creation of a new type of ordered
organic multilayer structure including highly ordered interfaces. It is well known that
the requirement of lattice matching places strong restrictions on the materials which can
be employed to produce high-quality interfaces using inorganic semiconductor materials.
This is due to the fact that they are bonded by short-range covalent or ionic forces. In
contrast, organic materials are bonded by weak van der Waals forces. This lifts such
restrictions and broadens the choice of materials that can be used to prepare organic
crystalline layered structures with the required properties (for more details and many
examples, see reference [3]). In the following sections, we will discuss at length the
electronic excitation spectra arising from the Frenkel-Wannier exciton hybridization in
different geometrical configurations: quantum wells, quantum wires and quantum dots.
At the same time, the nonlinear optical properties of hybrid excitons will be considered
in detail: we predict a large enhancement of the excitonic resonant nonlinearities, in some
cases of two orders of magnitude compared to those of traditional systems. A few other
results on the physics of hybrid excitons taken from the current literature will also be
presented.

We also consider the resonant interaction between Frenkel excitons in the organic QW
and Wannier—Mott excitons in semiconductor QW in a microcavity where organic and
inorganic QWs are separated. In this case the resonant interaction appears mainly through
the cavity photons and can be very strong if the cut-off frequency of the cavity photon is
close to the excitonic resonances. We demonstrate that in this case new hybrid Frenkel—
Wannier—Mott exciton—cavity photon states can be tailored to engineer the fluorescence
efficiency and relaxation processes.

In all of the cases mentioned above, we have assumed that the resonance splitting in
the exciton spectra is large in comparison with the relaxation width of the resonances (the
strong-coupling regime). However, for organic materials in many instances the width of
the excitonic resonances can be larger than possible frequency shifts or splitting. In such a
situation (the weak-coupling regime), instead of a coherent superposition of excitonic states,
the Forster energy transfer from the inorganic QW to the organic QW has to be considered.
We investigate this phenomenon in detail, considering the energy transfer to organics from
free and localized Wannier—Mott excitons as well as from unbound electron—hole pairs.
We show that this can produce efficient luminescence in the organic layers with electrical
current pumping of the inorganic material.
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Figure 1. The physical configuration under study.

2. 2D hybrid excitons

2.1. Electronic states and linear optics

Here we study the dipole—dipole interaction between an organic quantum well (OQW) and
an inorganic one (IQW) and demonstrate how new hybrid states arise [4]. The configuration
that we consider is the following. A plane semiconductor IQW of thicknessoccupies

the region|z| < L, /2, the z-axis being chosen to lie along the growth direction. All

of the space withy > L, /2 is filled by the barrier material and that with< —L,,/2

by the organic material in which the OQW is placed (figure 1). For simplicity, we treat
the organic molecules in the dipole approximation, neglecting the contribution of higher
multipoles to the interaction, and we consider the OQW as a single monolayer, i.e., as a
2D lattice of molecules at discrete sitas placed att = —zo < —L,,/2 (the generalization

to the case of several monolayers is easy). All of the semiconductor well-barrier structure
(z > —L,/2) is assumed to have the same background dielectric constamibile the
organic half-spacez(< —L,,/2) is taken to have the dielectric constanf{corresponding

to the organic substrate).

Due to the difference in electronic structure of the two QWSs under consideration, one
may neglect the single-particle wavefunction mixing; in other words, the OQW and the IQW
states are assumed to have zero wavefunction overlap. Assuming a perfect 2D translational
invariance of the system, we classify the excitons according to their in-plane wavekector
Suppose that for some bands of Frenkel excitons in the OQW and Wannier—Mott excitons
in the IQW the energy separation is much less than the distance to other exciton bands.
Then we take into account only the mixing between these two bands. We choose as a basis
set the ‘pure’ Frenkel and Wannier states, i.e., the state in which the OQW is excited, while
the IQW is in its ground state (denoted kfy, k)), and vice versa (denoted bW, k)), their
energies beindZr (k) and Ey (k). We seek the new hybrid states in the form

o, k) = Ao (R)|F, k) + By (K)|W, k) @

wherea = ‘u’, ‘I’ labels the two resulting states (upper and lower branches). The
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Schibdinger equation for the coefficients B is then written as
(Er(k) — E)A(k) + (F. k|H; |W, k) B(k) = 0

N 2
(W, E|Hin | F, k)A(K) + (Ew(k) — E)B(k) =0 @

where H;,, is the Hamiltonian of the dipole—dipole interaction between the QWs. Solution

of (2) gives the energies of the upper and lower branches and the splittityg

Ep(k) + Ew (k) £ A(k)
2

where we use the notatidn(k) = |(W, k|1§,»,,,|F, k)| for the coupling matrix element. For
the orthonormalized new states the weighting coefficients are given by

E,i(k) = A(k) = V(Ep(k) — Ew (k)2 + 4T2(k) ®)

> i< L1 ErE) = Ewk)
[A,(R)|” = |Bi(k)|” = 2(1+ Ak) ) (4)
2 g P = L1 Er®) — Ewh)
[Ai(R)|” = |B,(R)|” = 2<1 AK) ) )
To evaluate the matrix elemefy, we write the interaction Hamiltonian as
Hiy ==Y p"(n)-€m) (6)

where pf(n) is the operator of the dipole moment of the organic molecule situated at
the lattice siten, and £(n) is the operator of the electric field at the poinf produced

by the IQW exciton. If we introduce the operator of the IQW polarizatl (r), then

the operatorsE (n) and PV (r) are related to each other in exactly the same way as the
corresponding classical quantities in electrostatics:

Ei(r) = /dsT’ Dij(r) — 7, 2, Z/)I%W(T’) (7

wherei, j = x,y,z, 7y = (x,y) andD;;(r, ') is the Green’s function appearing in the
analogous problem of classical electrostatics. It is equal tattheCartesian component
of the classical static electric field at the point produced by thejth component of the
classical point dipole, situated at the poiritand is connected to the Green’s functiGn
of the Poisson equation in an inhomogeneous medium with the dielectric constait

d 0
Dij(r,7') = —— —G(r, 1) (8)
0x; 8xj
d 0 , ,
—&ij(r) —G(r,r') = —4ns(r —r'). 9)
E)xi 8)Cj

Since our system is translationally invariant in two dimensions, it is convenient to consider
the Fourier transform:

’ / de Nk (rj—r)
Dij(ry = my,2,2) = / @2 Djj(k, z, 7)€k (10)

and analogously foG (rj — |, z, Z'). ThenG(k, z, Z)&* "I is the potential, produced by a
charge-density wave (r) = §(z — z/)€*"1. In our case the dielectric constant is a simple
step function
ESU < —Lw/2
gij(r) =

(11)
85,'/‘ > —Lw/2
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and the potential may be readily found from Poisson’s equation

d? ) , 478(z — 2)
(dzz k )G(k,z,z) = 2@ (12)
with the usual electrostatic boundary conditions at the interface—L,,/2 (continuity of
the tangential component of the electric fieldkG and of the normal component of the
electric displacemente(z) 3G /dz). The Green’s functio®;; forz < —L,,/2,z > —L,,/2

is then given by

A [ 1k; ik;
Diik,z,7) = ——kebeO [ = 45, ) =L+, ). 13

itk.2.2) =77 T )\ s (13)
Thus, the matrix element df?,-n, that we are interested in can be written as

(F, K| Hip [W, k) = = / d*r (F, k| p;()|0)Dyj(n — 7y, =20, 2) (012" ()| W, k).

(14)

The matrix element of the IQW polarization between the ground $tatand |W, k)
for the 1s exciton with Bohr radiugg is equal to [5, 6]

R 2 dve eik'Tu
(OIPY (r)|W, k) = \/;613 7 x“@x" (@) (15)

where,/2/(na§) is the value of the 1s wavefunction of the relative motion of the electron

and hole, taken at; = 0; x“(z), x"(z) are the envelope functions for the electron and hole

in the IQW confinement potential (we assume the IQW to be thin, so that the transverse and
the relative in-plane motion of the electron and hole are decoupledSaadhe in-plane
normalization area. Finally,

d’ = f uk (r)(—er)u.(r) dr (16)

is the matrix element of the electric dipole moment connecting the conduction and valence
bands {" is taken to be independent &f u,,, are the Bloch functions for the conduction
(valence) band extremum and the integration in (16) is performed over the unit cell). Its
Cartesian componen®™ (i = x,y,z) may be expressed in terms of the Kane energy
Eo [5]

ezﬁonci2

2moE?
where mg is the free-electron masg;, is the energy gap between the conduction and
valence bands and is the appropriate symmetry coefficient. In semiconductors with the
zinc-blende structure”” = ¢ = 1//2, ¢ = 0 (heavy holes) and!" = " = 1/./6,
ch = /(2/3) (light holes). We see that only light holes can contribute toztftemponent
of the IQW polarization.

For the Frenkel exciton the dipole moment matrix element, contributing to the matrix

element (14), is given by

|d}< |12 = (17)

—ik-n efik~n
(F, k|pi(n)|0) = d"™ = apd™ 18
g JN Js (9
whered? is the transition dipole moment for a single organic molecule (analogodé‘to
for the semiconductor)N is the total number of sites in the lattice and is the lattice
constant, which may be considered as the radius of the Frenkel exciton.
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Now we can write out the final expression for the coupling matrix element:

N 2df*d* N
(F, k|Hipn|W, k) = —| =———— [ dz Dj;(k, =20, ) x“(@)x"(2).  (19)
7T afF dp

From equations (13), (19) we see that the only contributing polarizations for the semi-
conductor are those alorfg (L-modes) and along the growth directian(Z-modes, only
for the light holes, according to equation (17)). For simplicity we take the electron and hole
confinement wavefunctions for the lowest subbands in the approximation of an infinitely
deep IQW:

2 Tz
e h
= —cod|— 20
x‘@x" (@) ™ (Lw) (20)
and assume the transition dipole moment in the orgadfcdo be real (which is always
possible with an appropriate choice of molecular wavefunctions). Without loss of generality
we may take the vectak along thex-axis. Evaluating the integral in (19), we obtain the
interaction parametdr, , for the L- and Z-modes:

827 e X0 sinh(kL,,/2) 1951y @2+ (df?
I'pzyk) = .

e+& 14 (kL,/2m)2 apagLy,

It is seen thatl"(k) has a maximunt,,,, atk = k,... The value ofk,,, for arbitrary
zo and L,, may be found numerically; foto — L,,/2 > 0.1L,, it is well described by the
formula

(21)

1 2ZO+Lw
knax ~ — In[ ———— 22
o (52 22)

while in the limit zo ~ L,,/2 we havek,,,, >~ 2.4/L,,.

10 — -

I'(k), meV

Figure 2 The interagtion parametét(k) for ¢ =12 D (D= debye),d =5D, az =25 ,5\,
ar =5A, L, =10A, 20 =10A, ¢5c =6, £xc = 4.
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Figure 3. The dispersiorE, ; (k) of the upper and lower hybrid exciton branches (solid lines)
and that of the unperturbed Frenkel and Wannier excitons (dotted lines). The ‘weight’ of the
FE component in the lower brandh; (k)|2 is shown by the dashed line. The parameters are
the same as in figure 2u(y = 0.7my); the detunings = 10 meV.

We approximate the WE dispersion by a parabola with the in-plane effective mass
my = m, + my, m, @y being the electron (hole) mass, and neglect the FE dispersion since
the typical masses ar®—100Qm:

7212
Ew(k) = Ew(0) + o

Er(k) = Er(0) Er(0) — Ew(0) = 4. (23)

We will measure all energies with respectig, (0). The dispersion of the hybrid states (3)
can be written as

5 h2k2 s Rk2\?
E.i(k) — Ew(0) = = + + /(== + T'2(k). (24)
2 4mW 2 4mW

To obtain numerical estimates we choose the following values of parameters. For the
IQW those representative of 1I-VI semiconductor (e.g., ZnSe/ZnCdSe) quantum wells are
taken [7]: ¢ = e = 6, d"“/ap ~ 0.1e (which corresponds ta@* ~ 12 D and a Bohr
radius of 25A), the exciton massy = 0.7m and the well widthL,, = 10 A. For the
organic part of the structure, we take parameters typical of such media (e.g., see [3, 8, 9]):
£ =Es =4, th transition dipole for the molecules in the monolayér=5 D, ar =5 A

andzo = 10 A. We plot I'(k) for these values of the parameters in figure 2. We see
thatT,,.. >~ 11 meV. The dispersion curvds, ;(k) along with the FE weight in the lower
branch|A,(k)|? for three different detuningé = 10 meV,$ = 0 and§ = —10 meV are
plotted in figures 3-5.

For § > 0O the properties of the excited states are changed drastically. In this case
the zero-approximation dispersion curves for FE and WE cross at the poiatkyg =
V2mw8/h?. At k = 0 the upper states are purely F-like and the lower states W-like; at
k ~ ko they are strongly mixed and a large splitting of their dispersion curves is present,
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A(ko) ~ 2T (kg), and for largek (k > ko) they ‘interchange’: the upper branch becomes
W-like with the quadratic dispersion and excitations of the lower branch tend to FE. If
8 < 0, thenEw (k) > Ep(k) for all k and no crossing occurg, (k) closely follows the
WE dispersion andA, (k)|? <« 1; the lower state is FE-like.

A nontrivial feature of the lower-branch dispersion is a minimum away fiom 0,
which is always present fat < 0 as well as for some positive values f0 < § < 8,
and is at its deepest fér = 0. The critical value o may be found if one looks at the
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values of the derivatives of; (k) at k = 0. It turns out that

% =0 (8 #0)
dzf,iio) <0 (<6 (25)
dzj,;f” >0 (¢>6)

ands., when the minimum ‘splits’ offt = 0 is given by

For our parametersi,, >~ 16 meV. For large negative values &f« —TI',.,, the lower-
branch dispersion &t <« v/2my38/h? may be approximated as
I2(k)
18]
So, the depth of the minimum for largé| is I'2__/|8| while for small$ it is of the order

max

of I',... and we see that effective range dfvhen the minimum is the most pronounced
is —Thnax S8 < 8. As @ consequence, at low temperatures and under optical pumping
at frequencies above the excitonic resonance, excitons will accumulate in this minimum,
which can be detected, for example, by pump—probe experiments. The fluorescence from
these states should increase with temperature, since states withkdnealbme populated.

If an incident electromagnetic wave with the electric fi€lgr) = £€9" is present,
then the interaction with the hybrid structure is described by the Hamiltonian (neglecting
the local field corrections)

Hon = —&o - (Z P (e + / dz/ dry PW(rﬂ'Q'T') (28)

where we have neglected thedependence of the incident field since the thickness of our
structure is much less than the light wavelength. The corresponding matrix element is
different from zero only ifk = Q) and in this case is equal to

Ej(k) — Ew(0) =~ —|8] —

(27)

(o, k| Hop|0) = —Eo - MY = —& - (AL(k)M" + B:(k)M,)) (29)
where
S
MF =JNd™ = £dF* (30)
ar
2JS
= [2YS g [ ox o a (31)
T ap

are the optical matrix elements for the isolated OQW and IQW respectively, which are
independent ok. Usually we haveM” >» M"Y sincear « ag, and in the region of strong
mixing, the oscillator strengtlf® of a hybrid state is determined by its FE component:

FéR) = AR fT. (32)
At the crossing poink = ko (for § > 0) we have|A, (k)| = 1/2 and the FE oscillator
strength is equally distributed between the two hybrid states. For the hybrid exciton radii
the opposite relation holds. Calculating the expectation value of the exciton radius squared
72 in the statda, k) we obtain

(o, KIP|a, k) = |Aq(R)[P(F, KIF?|F, k) + | By (k) [2(W, KIF2|W, k) = | B, (k)|%aj, (33)
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sinceap > ar and we neglect the latter. Cross terms do not appear since we neglect the
single-particle wavefunction mixing between the two QWSs.

We see that the new states can possess both large oscillator strengths and large exciton
radii. This effect is especially pronounced if the crossing of the FE and WE dispersion
curves occurs for the value of the wavevector close to that of the maximum of the coupling
strength: kg =~ k... Sincekg is determined by the detuninyy andk,,,,, in turn, depends
on L, andzo (equation (22)), a special choice of these parameters should be made for
maximizing the effect. Also, in order to take advantage of the hybrid states in optics,
the wavevector of light in the medium = nw/c (1. being the background refraction
index) should not be far fromy. Usually, near excitonic resonances< ko and special
care should be taken to overcome this difficulty (e.g., using a coupled diffraction grating
with period 2r/kq [10] or a prism). We mention, however, that even in the region of
small wavevectors in which the 2D excitons are radiative, the hybridization may be realized
not due to the instantaneous dipole—dipole interaction, but due to the retarded interaction
stemming from the exchange of photons. Such a situation has been analysed (even in the
nonlinear regime) with an appropriate transfer-matrix approach, which is equivalent to the
solution of the full Maxwell equations [11].

As regards the choice of materials for the implementation of the system considered
here, examples of molecular substances having small-radi@sA) excitons with energies
of a few eV, among those already successfully grown [3] as crystalline layers on a
variety of inorganic (including semiconductor) crystals, are the acenes, such as tetracene
(2 eV) or pentacene (8 eV), the metal phthalocyanines, such as VOR6 V) or CuPc
(1.8 eV), and the tetracarboxylic compounds, such as NTCDA€Y) or PTCDA (22 eV).
Semiconductors having large-radius excitons with matching energies are, for instance, the
[lI-V and 1I-VI ternary solid solutions such as GaAlAs, ZnCdSe and ZnSSe [12]; beside
a judicious choice of alloy composition and well thickness, a fine tuning of the resonance
condition could be achieved by applying an external static electric field along the growth
direction (the quantum-confined Stark effect [13]; for hybrid excitons it has been considered
in reference [14]). A major experimental problem is the control of the interface quality:
the inhomogeneous broadening should remain small and the in-plane wavekeetor
(sufficiently) good quantum number; organic superlattices with high-quality interfaces have
been demonstrated [3]. The necessary condition for the hybrid states to be observable is
that the exciton linewidths must be smaller than the splitthi@). This is the case in the
present calculations, where fég = k,,,, we haveA(kg) = 2,4 =~ 20 meV, while in
inorganic QWSs the homogeneous linewidth at low temperatureslisneV [15, 16]. The
nonradiative linewidth of a 2D Frenkel exciton in an OQW can also be small: in the case
of a 2D exciton in the external monolayer of anthracene, this linewidth at low temperatures
is ~2 meV [17]. In principle, apart from the resonance condition and the large difference in
excitonic radii, the present model demands no specific requirements and the rapid progress
in the growth of organic crystalline multilayers justifies some optimism about its concrete
realization.

We also mention here the work of D’Andrea and Muzi [18], where the effects of the
exciton—phonon interaction in hybrid systems were studied. In this work the resonant Raman
spectroscopy is also suggested as a tool for studying hybrid organic—inorganic QWSs.

2.2. Nonlinear optics

2.2.1. The resonant®-nonlinearity. From the results of the previous subsection we may
expect that the exciton hybridization should strongly modify the nonlinear optical properties
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of the structure under consideration. Indeed, hybrid excitons can combine both a large
oscillator strength, which makes it easy to produce large populations, and a large radius,
which, in turn, leads to low saturation densities. In this subsection we analyse the situation
quantitatively [19], calculating the response of the interband polarizéloa PV + PF

to the external driving electric field (corresponding to a cw experiment)

E(r,t) = £V +cc (34)

in the presence of a large density of excitations using the standard technique of
semiconductor Bloch equations [13, 20]. Since we are considering a cw experiment, the
populations are stationary and may be treated as parameters in the equation for the time-
dependent interband polarization.

First, we express the operator of the electron—hole interband polariz&iber) in
terms of the electron and hole creation and annihilation operators in the envelope function
approximation, following the standard procedure [5, 20]:

ve

AW
P"(r)= S

X @Qx"(@) Y ¥ h_glriq +HC. (35)

k.q
Herex¢(z), x"(z) are electron and hole wavefunctions in the given IQW subbands (resonant
with the FE),é, and/y, are annihilation operators for an electron and hole with the in-plane
wavevectork in the subbands under consideratighjs the in-plane normalization area
and d*° is the matrix element (16). We do not take into account the spin degeneracy,
considering thus the polarization produced by electrons and holes with a given spin (thus,
the final expression for the susceptibility should be multiplied by two). An analogous
expression for the OQW polarization is

dF

apS

Prr) = 8(z+z0) Y €*" By, + HC (36)
k
whereB,, is the annihilation operator for the Frenkel exciton, which is assumed to be tightly
bound.
Besides the term of the Hamiltonian describing free Frenkel excitons and free electron—
hole pairs (with the single-particle energi€s (k), ¢.(k) andej, (k) correspondingly), the
Hamiltonian that we consider here includes the following.

(i) The Coulomb interaction between electrons and holes:

Heon = o5 0@ D @yl yfrolh + Rl il i — 28}, il i) (37)
q#0 k&
27 ¢?
v(q) = (38)
&oq

wheregg is the static dielectric constant of the IQW.
(ii) The dipole—dipole interaction between the QWSs, as follows from the equations (6)
and (7):

Hiyp =Y Vi (R)BL D " h_géhsq + HC (39)
k q
didj eyl
Viua(l) = = f dz Dy, (ks —20, 1“1 (2) (40)
ar

which corresponds to (19) witly[2/(ra?)] replaced by 1./S since we use plane waves as
the basis for the semiconductor states. Of course, this interaction is also of Coulomb nature,
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but since we treat the OQW and the IQW as completely different systems and neglect all
effects of electronic exchange between them, these pieces of the Hamiltonian are separate.
(iii) The interaction with the driving electric field (34):

Ay = —(Eo - Mp)e_iwzéi?” — (Ey- MMye ! Zegﬁqﬁ[q +HC (41)
q

ﬁ

ar

Meh — dvc*fxe*(z)xh*(z) dZ MF — dF* (42)

where we again neglect thedependence of the field and the wavevector dependence of
Meh_

Given the Hamiltonian, we can write down the equations of motion for the Heisenberg
operators. The polarization is obtained by averaging the expressions (35), (36) over the
equilibrium density matrix. The result is expressed in terms of the polarization functions

(h-s®ra®) =Pl @ (Buo)) =PL. (43)

Average values of the four-operator terms are factorized in the Hartree—Fock approximation
and are expressed in terms of the polarization functions and the populations defined by

(& (1)éq (1)) = 8gqn </’Alj1(t)ilq/(t)> = Sgqn’. (a4)

Here the averages with different wavevectors correspond to the intraband polarization, which
is far off resonance and may be neglected. Since the electric field excites only states with
the given total in-plane wavevect@p,, from now on we sek = Q. As a result, we
obtain generalized Bloch equations for the polarization functions:

dPf

=g = Er(B)Py + Vi (k) Y Py (@) — (EoM e (45)
q

,_dP,:V(q)_ Y W Y W e .k * F_ ehy oot

ih @ =HoPy (@) +HaP (@) + L —njy, — 0" ) [Vi, ()P — (EoM " )e™

(46)
v(g—q)

HoPy! (@) = [ee(k + @) + en(-@] P (@) = ) ———Py (d)

q

P (9) = — [Z @(miw - n'iqo] Py (@
q

7

e h U( - /) ’
+(nk+q+nl,q) E —qS 1 PY(q).
7

Here the ‘Hamiltonian{, describes the evolution of the polarization in an isolated IQW in

the absence of electron—hole populations and corresponds to the Wannier equation [20]. The
resonant Wannier exciton wavefunction in the momentum sgdageq) is its eigenfunction

with the eigenvalueEy (k). The ‘Hamiltonian’ H; describes the nonlinear many-particle
corrections. It is proportional to the populations, »" and we treat it perturbatively,
keeping only the first-order corrections to the eigenfunctidn.(q) and to the eigenvalue

SEw (k). Since populations are proportional to the intensity of the applied f&ld, our
calculation describes a third-order nonlinearity.
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We seek the solutions depending on time a¥’e The solution forP,gV(q) may be

expressed in terms of the orthonormal basis of eigenfunctiofféoef ;. Picking up just
the resonant term, we may write

PY (@) = u) (Pr(q) + 8Pr(q))e™ (47)

€ =Y "(4(q) + 504(@) PR (@) (48)
q

Pl =ule (49)

Then equations (45), (46) are reduced to
(i_za) — EF(k))MII; = pr(k)u,‘;v — JF

_ (50)
(o — Ew (k) = SEw(R))uy = Bi.Viw (K)uy, — BrJw

where we have introduced the coupling matrix element
Vew (k) + 8Vew (k) = Vi (k) Y _(Pr(q) + 5Pk(q)) (51)

q

and the effective driving forces

Jp=&-MF Jw + 81y = E - M"Y " (h(q) + 504 (q)) (52)
q

and also the Pauli blocking factor given by

B = (Z(l — Mg — n’iq)cbz(q)) / (Z <1>z(q)). (53)
q q

In the low-density limit and withfy = 0, these equations correspond to the eigenvalue
equation (2) with the coupling matrix elements given by (19), since for 1s excitons

8ma? 1
Di(q) =,/ < a1 qucbk(q) =/28/(md}). (54)

Solving the system (50), we obtain for the polarization of the structure under consideration
(per unit area)

F g Fx

N N M: . .
P (r)) = / <PiF(r) + P,-W(r)> de~ S5 S’ g @tk 4 cc

= yij (o, k)& e HET 4 cc (55)

where we have retained only the term proportiongl¥” |2 since|Jy | < |J£|. Finally, we
obtain for the susceptibility (not forgetting the factor of 2 originating from spin degeneracy
as mentioned at the beginning of this subsection)
. ) de*df Ew(k) + 8Ew(k) — ho
iilw, = — — .
Xii az (Ew(k)+8Ew (k) — ho)(Ep(k) —ho) — Br|Viw (k) + 8Viw (k)2
(56)

In equation (56) the nonlinearities appear through the blue-8lift, the blocking
factor 8 and the modification of the hybridizatiohVry due to the correctiod®; all
of these effects are typical of Wannier excitons [13], but here they belong to the hybrid
excitons which also have a large oscillator strength characteristic of Frenkel excitons. When
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only excitons are present (i.e., under resonant excitation at low temperature), the nonlinear
corrections can be calculated to first order in #sewith

Mg =1y = "2 () (57)
whereny is the total density of electron—hole pairs and the factat thkes into account
electron (and hole) spin degeneracy of two and an equal population of resonant FE and WE.
In terms of the previous subsection, this corresponds to the situation ivherty; thus

Ep(k) ~ Eyw(k), |Ag)? > |By|? ~ 1/2 and|uf |? ~ |u}Y |2 ~ (n7S) /4. The blue-shif§ Ey,

is given by the expectation value &f; on ®;(q) and reduces to

8Ew ~ 0.48E,masny (58)

whereE, is the binding energy of a 2D Wannier exciton. The blocking factor is calculated
from equation (53) and turns out to be

Br ~1—057wa’n;. (59)

The effect of§Vry can be estimated [13] by writing®(q) as a sum over all continuous
and discrete excitonic states which are then approximated by plane waves in the expression
for |Vew + 8Vewl|?, giving

|Vew + 8Vewl? 2 (1 — 0.487a3n7)|Vewl|?. (60)

Close to resonance (denoting the detuning— Ew (k) by AE), equation (56) can be
approximated by

dr=df AE
i, k) = —2—-
xij(@. k) 2 AE2— |[V;W]2
) 1.05/Vpw|? — 0.48E,AE  0.48E,
x |1—magnr
AE? — |Viy |2 AE
= x (@, k) (1 - ”—T) (61)
ng

where (. k) is the susceptibility of the hybrid structure ay = 0 (the linear
susceptibility) andng is the saturation density. The characteristic feature of the
expression (61) is the presence of the fagtdf/ar)? in x@ instead of(d"/ap)? in the
analogous expression for an isolated IQW. This leads to the enhancement of the absorption,
determined by Iny ®. Thus, while the saturation density is comparable to that of Wannier
excitons {5 ~ 1/a2), the density of photogenerated electron—hole pairs, for a given light
intensity, can be two orders of magnitude larger (by a faetu/ar)?); for the same
reason, the linear susceptibilig/> can also be two orders of magnitude larger. Therefore,
the present theory substantiates the intuitive expectation of very pronounced nonlinear
optical properties of the hybrid excitons.

While the range of validity of equation (61) (with respect to variationsAdf and
nr) is rather limited, the expression for given by equation (56) holds true as long
as the basic approximations of the present approach are tenable. These are, in addition
to the first-order perturbation theory with respect to the excitation densifythe usual
Hartree—Fock decoupling in the equations of motion adopted in equations (45), (46), the
subsistence of well defined individual excitons (valid only fgr < ng) and the neglect of
screening due to the reduced screening efficiency of a two-dimensional exciton gas [13, 20].
Numerical examples of the predictions of equation (56) have been obtained using the values
of semiconductor parameters representative of IlI-V semiconductor (e.g., GaAs/AlGaAs)
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Figure 6. Real and imaginary parts of the 2D susceptibijityear the hybrid exciton resonances
in the linear regime (solid lines), for medium excitation density & 10** cm~2; dotted lines)
and for high excitation density:¢ = 2 x 101 cm~2; long-dashed lines). The other parameters
ared =20D,ap = 60 A Ep = 20 meV, e, = 11; the rest are the same as in the previous

subsection. The linewidthsyy = hyp = 2 meV.
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Figure 7. Real and imaginary parts gf in the linear regime (solid lines) and for high excitation
density ¢ = 2 x 10! cm~2; long-dashed lines); in the first casgy = 1 meV, while in the

second caséyy = 3 meV.

guantum wells, since the necessary information on homogeneous linewidths of excitons in
[I-VI QWs is not currently available to the authors. Namely, wesset= 11, d"° = 20 D,
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the Bohr radiusip = 60 A and the binding energy is taken to g ~ 20 meV; the rest
are the same as in the previous subsection. This givgg| ~ 4 meV atk = 10’ cm™L.
Assuming a phenomenological linewidthyy = hyr = 2 meV for both excitons, figure 6
shows the split resonance of the hybrid excitons at different excitation densities (linear
regime,ny = 10'* cm=2 andn; = 2 x 10'* cm~2); it is noticeable, in particular, that for
vanishing excitation density the mixing is complete and the oscillator strength is equally
shared by the two peaks, whereas for high excitation density, due to the small blue-shift of
the WE, the stronger line corresponds to the lowest (more Frenkel-like) hybrid exciton.
Figure 7 shows the effect of a density-dependent broadening of the Wannier exciton:
hyw = 1 meV at low excitation densities amgy, = 3 meV at high excitation density [21]
(hyr being fixed at 2 meV). From numerical estimates such as those shown in figures 6 and 7,
we obtain for the relative nonlinear change in the absorption coefficient close to resonance
|Aa|/a ~ 107 cn? ny, which is analogous to the case of a semiconductor multiple
guantum well. However, for a given pump intensity, the 2D density of photogenerated
excitonsny in our case of hybrid excitons is about two orders of magnitude larger because
the oscillator strength of hybrid excitons is comparable to that of Frenkel excitons rather
than that of Wannier excitons.

A similar theoretical approach can be used to calculate the dynamical Stark effect for
hybrid excitons, which shows qualitative and quantitative differences with respect to the
case of the usual inorganic semiconductor QWs [22].

2.2.2. Second-order susceptibility®. As was already mentioned, the calculations,
performed here, correspond to the third-order nonlinearity. But the hybrid system considered
here has also a nonzero second-order susceptilyifty For such structureyx® £ 0 even

if the original OQW and IQW are centro-symmetric and the second-order processes are
forbidden by parity conservation. Such a phenomenon can take place because the resonant
dipole—dipole coupling breaks the symmetry along the growth direction. Of course, any
interaction between the OQW and the IQW can be responsible for symmetry breaking.
However, the resonant dipole—dipole coupling considered here is probably the strongest
among the possibilities. In a geometrical sense, this system is analogous to an asymmetric
semiconductor QW. The calculation gf? for such a system can be found in reference [23]

and the calculation of® for the hybrid system may be performed following the lines of

the latter work.

A detailed calculation of the second-order nonlinear susceptibility of the hybrid structure
will be published elsewhere. Here we restrict ourselves to some qualitative remarks. The
general microscopic expression for thth-order susceptibility contains+ 1 dipole moment
matrix elements, involving intermediate states. For the linear susceptibility there is only
one intermediate state, and if the latter is a hybrid one, the corresponding dipole matrix
elements are determined mainly by the Frenkel component of the hybrid state. Thus,
the linear susceptibility of the hybrid structure contains the fa¢tdr/ar)?, as is seen
from equation (61). For the second-order nonlinear susceptibility one must have two
intermediate states or three virtual transitions. One of them may be a hybrid one, and as long
as the materials under consideration have no static dipole moments, the other intermediate
state has to be an excited state of the IQW, which is not resonant with the Frenkel exciton.
Hence, the result will be proportional # /ar; the other two virtual transitions will give
the factor, coinciding with that for an isolated IQW. One may apply analogous arguments
to the case of the third-order nonlinearity: of three intermediate states needed, one may be
the hybrid one, the second may be the ground state and the third one may be again the
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hybrid state (such a scheme corresponds to the Kerr nonlinearity). Thus, one should obtain
a factor (d¥ /ar)*. Indeed, in equation (61) we havé’ /ar)? in x® and another factor,
d" /Jar)?, comes fromn; when the latter is expressed in terms of the incident electric field.
There exists another mechanism for second-harmonic generation. It does not require
parity breaking, since the optical quadratic nonlinearity appears due to the contribution of
spatial derivatives of the electric field to the nonlinear response [24, 25]. It works also in the
case of an isolated symmetric QW and corresponds to a higher multipole contribution rather
than the dipole one, which is usually considered. The hybrid system will again have an
advantage here because of the increase in the oscillator strength due to the Frenkel exciton
component.

2.3. Hybrid excitons in other heterostructures

Hybrid states of Frenkel and Wannier—Mott excitons were also considered for other

geometries, such as quasi-1D parallel organic and inorganic quantum wires [26] as well
as in a spherical system (quantum dot) [27]. We do not analyse here the experimental
possibilities of constructing such systems and mention only some essential points which are
different from those in the plane geometry studied above.

An important feature of the hybrid states in quasi-1D systems is the fact that the matrix
element of the resonant dipole—dipole coupling between the quantum wires is different from
zero even at zero wavevector (which is not the case for 2D systems). This makes it possible
to excite these states directly without involving any special methods (such as using coupled
gratings or attenuated total reflection). Evidently, an analogous situation arises in the case
of quantum dots, where the states cannot be described by the wavevector at all.

In reference [27] the third-order nonlinear susceptibiljty® for a semiconductor
guantum dot covered with organic material was found. In this work it was assumed that the
inhomogeneous broadening in the organic material is absent and it is possible to consider
Frenkel excitonic states. Similarly to the 2D case (section 2.2), a strong enhancement of
x® near the hybrid exciton resonance was predicted.

o]
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organic QW

cavity

inorganic QW

€

™|

Figure 8. A schematic diagram of microcavity-embedded organic and inorganic quantum wells.
The mirrors are simply described by a very high dielectric consiagpts.

2.4. Microcavity configurations

The structure described in section 2.1 presents the technologically challenging problem of
growing high-quality organic—inorganic heterojunctions only a few nanometres apart. A
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more promising way of realizing a hybrid exciton system is to couple Frenkel and Wannier
excitons through a microcavity (MC) electromagnetic field [28]. Strong exciton—radiation
interactions are observed in microcavities [29] and we can expect hybridization to arise not
due to the Coulombic short-range interaction, but due to the strong long-range interaction
stemming from virtual-cavity-photon exchange. For cavity-embedded QWs, the fabrication
problems would be much alleviated as their separation can be of the order of an optical
wavelength. For the sake of simplicity, however, in the following discussion we assume
that both QWs lie at the centre ¢ 0) of a single MC at a distancé « A from each other

(see figure 8). This situation is qualitatively equivalent to that of two coupled microcavities
for which the growth conditions could be separately optimized for the organic and inorganic
well [28].

Microcavity-embedded organic QWs in the weak-coupling regime have already been
realized [30] and effects such as spectral narrowing and increased directionality of light
emission demonstrated. To achieve the strong-coupling regime, as observed for inorganic
QWs [29], with organic materials, we need molecular compounds combining a large
oscillator strength of the lowest-energy electronic transition with an absorption linewidth
smaller than the cavity mode splitting. Good candidates for such structures are thin-film
crystals of aromatic molecules like anthracene, tetracene, terrylene and many others. For
example, five monolayers of terrylend ¢~ 50 A) exhibit an oscillator strength per unit
area as large as ¥ocm~2, more than a hundred times that of a GaAs QW exciton.

In order to illustrate the results obtained for such a system [28], we use for the
material parameters data from available experiments or realistic estimates. We assume
that Ep(k) = Ec(k=0) and Ey(k = 0) = Ec(k = 0)(1 + n), i.e. a Frenkel exciton
resonant with the cavity mod€c (we neglect the dispersion of the FE) and a Wannier
exciton with a fractional detuning of at k = 0. Using the reduced variable = k/ k..,
with k.., = w/L, we have for this case

Ec(k)/Ec(O)z\/1+E2 EW(k)/EW(O)=1—i—n+0¢§2
with a = Ezkfw/ZMEc(O). For resonance akE-(0) = 1.5 eV ande ~ 10, we have
keay = 2.4 x 10 cmt and, using an exciton magd = 0.3mg (mg is the free-electron
mass)a = 107%. The inorganic QW Rabi splitting\; is taken to be 3 meV; then, assuming
a ratio of the organic to the inorganic QW oscillator strengtly ~ 60, we have for the
organic QW Rabi splittingA, ~ 23 meV. The ratioA,/A; =~ 8 is by no means unusually
large and, as a matter of fact, even larger oscillator strengths can easily be attained with
many organic materials. For example, from the standard LT splittings of 0.08 meV in GaAs
(¢ > 12) and~50 meV for the lowest singlet exciton in tetracene £ 9) [31], their
oscillator strength ratio is about 500. The large splittidgs~ 100 meV expected from
such estimates gave reasonable hope for reaching the strong-coupling regime even at room
temperature since the absorption linewidth can be as low as a few tens of meV in selected
organic systems.

In fact, very recently and for the first time, the strong-coupling regime in a MC with
an organic active layer has been observed [32] employing several organic compounds.
For example, using the organic semiconductor tetra-(@&r&butyl)phenol-porphyrin zinc
(4TBPPZn), a splittingA, >~ 100 meV has been found. In this case, the thicknessf
the active layer was about 1000 and, asA, « /L, such an experimental value [32]
corresponds very well to the estimate & ~ 25 meV [28] made foi., ~ 50 A. In these
experiments [32], different dyes have been blended in a polymer matrix to realize active thin
films. In order to suppress the inhomogeneous broadening and also to further enhance the
mode splitting, it is very important to employ crystalline organic semiconductors. We are
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Figure 9. (a) Bare dispersion curves of a cavity photon, with the WE and FE normalized to
the cavity mode at = 0. The FE exciton is resonant with the cavity mode and the WE has a
positive detuning. (b) Cavity polariton dispersion curves: for large wavevectors; branches 1, 2
and 3 turn into WE, FE and cavity photons, respectively. (c) Weighting coefficients of branch 1.
(d) Weighting coefficients of branch 2.

confident that in exactly this way it will be possible to observe the Frenkel-Wannier—Mott
exciton hybridization in an organic MC.

We assume such a situation in our demonstration calculations and neglect dissipation for
both bare excitonic states. The dispersion of cavity polaritBy&) and of the weighting
coefficientsN /"€ (k) (analogous toA and B of equation (1)) are shown in figure 9. From
figure 9(c) it is seen that the branch 1 (which at large wavevectors turns into a pure WE)
contains a major part of a FE statH\/fF) for k < 0.1. As seen from figure 9(d), the
branch 2 (which at large wavevectors turns into a pure FEkfer 0.25 also retains a
major part of a FE state {4 |%) while exhibiting a large cavity photon component. The FE
component is crucial in assisting the inelastic relaxation that will be considered, whereas the
cavity photon component obviously has a large radiative width. kFat 1 even for high
mirror reflectivities (1- R = 10°3), the cavity mode radiative lifetime is of order~ 1
ps. The better mixing of branch 2 with the cavity photon means faster radiative decay in
a larger phase space. Such a short lifetime is only effective in a very narrow region of
phase spacek(< 0.05%,,,) in the case of typical inorganic QW splittings; such a region
can only be reached in about 100 ps due to slowed-down relaxation [33] in the flat part
of the dispersion curve, poorly coupled to the cavity mode. In our case, to populate the
states of branch 2 with a large radiative width (i.e., those with 0.2%.,,), we can assume
that the parameters of the MC with two QWSs are such thakfaf < 0.2k.,, an inelastic
resonance condition is realized, i.e. that the energy differéi¢e) — E, (k') is close to the
energy of some intramolecular optical phonon strongly coupled to excitons. For this case,
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the relaxation rate can be of order 10 ps or less [28], i.e. at least one order of magnitude
faster than for MC with an inorganic QW.

Summarizing, we have considered the new possibilities which may appear for micro-
cavities containing resonating organic and inorganic QWs. Although our estimates are
preliminary, we can expect in such structures a drastic reduction of the relaxation time of
excitons to give states having a large radiative width and a short fluorescence decay time.
We can also expect that the combination of electrical pumping of excitons in inorganic
QWs with the fast relaxation and fluorescence of excitons in organic QWs will open up a
new scenario of excitonic processes in microcavities, of interest for both basic science and
device applications.

3. Forster resonant energy transfer from a semiconductor QW to organics

In this section we study the situation in which the width of the excitonic resonance in the
organic material is larger than possible hybrid excitons’ frequency shifts or splitting (the
weak-coupling regime). Then, instead of a coherent hybridization of excitonic states the
dipole—dipole (Brster) energy transfer from the IQW to the organic material has to be
considered. This case was analysed in detail in references [34, 35].

The configuration that we consider consists of a semiconductor quantum well
sandwiched between two semiconductor barriers, the whole semiconductor structure
embedded in bulk-like organic material (for the sake of simplicity, we choose a symmetric
configuration and consider the organic material to be isotropic). The background dielectric
constant of the semiconductor material is taken to be real, whereas the total dielectric
constant of the organic material has both a real and an imaginary part in the frequency
region of interest. In fact, we are interested in an organic material having a broad absorption
band in the optical range overlapping with the two-dimensional Wannier—Mott exciton sharp
resonance. We consider both cases of a free Wannier—Mott exciton as well as of a localized
one due to the alloy disorder and QW width fluctuations.

The Forster-like rate of energy transfer due to the dipole—dipole interaction can be
calculated simply from the Joule losses [36] in the organic material. The details are presented
in reference [35]; here we merely summarize the general scheme. We neglect retardation, as
the typical exciton centre-of-mass in-plane wavevector is much larger than the wavevector
of the corresponding resonant light. We also consider only the linear regime in which
excitons can be described in the bosonic approximation. Then the transfer rate may be
calculated as follows.

Let the QW exciton with the enerdyw be described by the envelope functigir,, ),
wherer,, r, are the positions of the electron and the hole, and the normalization be

/ Pr, &ry [ (e, r) 2 = 1. (62)

Then suppose that inside the QW we have the classical macroscopic quasi-stationary
polarization, oscillating with the frequeney:.

P(r,1) =d"“y(r,r)e’® + cc (63)

where d*¢ is the matrix element (16). Then, we solve the electrostatical problem (i.e.,
neglecting retardation) and find the corresponding electric field:

ER,1) = ER)E™ +cc. (64)
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The correct quantum mechanical energy transfer rate is given by the macroscopic formula

% = %E & Ime; (r, w) & (T)EF (r) (65)
wheres;; (r, w) is the complex dielectric function of the acceptor organic medium. Both the
microscopic dipole approximation and the macroscopic description of the organic medium
are valid as long as the electric field obtained is slowly varying in space on the molecular
scale. This condition is fulfilled in all of the cases considered below, since the typical
wavevectors of excitons as well as e—h pairs in the QW are small compared to the inverse
lattice constant (and the localization length is larger than the lattice constant).

3.1. Free excitons

First, we specify the geometry of the problem, which is the same for all subsequent
sections. We consider a symmetric structure, consisting of a semiconductor QW of thickness
L, between two barriers each of thickneks, the whole semiconductor structure being
surrounded by thick slabs of an organic material (in fact, we assume each slab to be
semi-infinite). We assume that in the frequency region considered here the semiconductor
background dielectric constan} is real and the same for the well and the barrier, while
that of the organic materia is complex. For simplicity we assume the organic material
to be isotropic (generalization to the anisotropic case is straightforward). So, the dielectric
constant to be used in equation (65), as well as in the Poisson equation below, is

gij(r) = { fb(su < Luf2 Ly (66)

85,‘]‘ |Z| >Lw/2+Lb

where thez-axis is chosen to be along the growth directign= 0 corresponding to the
centre of the QW.

We adopt a simplified microscopic quantum mechanical model of a quantum well
Wannier—Mott exciton, in which the polarization can be taken to vanishzoe L, /2
and that inside the well to be given by

2 2 wz\ €k
P(r)=d° | —— — )| — 7
(ry=d — co§<Lw) 7 (67)

where S is the in-plane normalization areé, is the in-plane wavevector of the centre-
of-mass motiony; = (x, y) is the in-plane component of andaj is the 2D 1s-exciton
Bohr radius [5]. It is not difficult to recognize the meaning of the factors constituting
(67), comparing it to (63). Namelyy/[2/(wa3)] is the 1s wavefunction of the relative
motion of the electron and hole, takengt= 0; next comes the product of the lowest-
subband envelope functions for the electron and hole in the approximation of the infinitely
deep well and finally the wavefunction of the centre-of-mass motion with wavevgtor
normalized to the are&. All of them are normalized according to (62). We choose as
x the direction of the in-plane component of the exciton dipole moradéhtpreferring to
consider the polarization with respect not to the wavevector, but to some fixed frame. This
little complication is justified since following the free exciton we intend to study the case
of the localized exciton, i.e., a system with broken 2D translational symmetry. Evidently,
we need to consider two cases:‘ being parallel and perpendicular to the QW plane. We
will refer to them asX- and Z-polarizations respectively.
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The corresponding electric fielfl(r) = —V¢(r) can be obtained from the solution of
the Poisson equation (the charge density begifi) = —V - P(r))

e()V3p(r) = 47V - P(r) (68)

with the appropriate boundary conditionszat= +L,,/2 and atz = £(L,,/2+ L), i.e.,
continuity of the tangential component of the electric fild) and of the normal component
of the electric displacemen®(r) = e(z)E(r). Writing ¢(r) = ¢(z)€*", we have the
equation fore (z):

o? 4rp(z)/e |z| < Lw/2
[ }mz) = i ’ (69)

— _k?
dz? 0 |z| > Ly/2
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where
pX(2) =ik, Ly, po(1+ cosqz) (70)
p'?(2) = —qLyposingz (71)
5 g

= [———— =21 /L, 72

ro wa 512 q / (72)
with the boundary conditions thai(z) ande(z) d¢(z)/dz should be continuous at the four
interfaces. The corresponding solution in the organic material {fer L,,/2 + L) is
given by

¢ () = poCpe HEtrtv/2 (73)
o _ ke 8r2q sinh(kL,,/2) (74)
k k k(k?+ q2) e, sinh(kLy, + kL, /2) + & cosh(kL, + kL,,/2)
@ 8% sinh(kL,,/2) 75)

k7 k(k? + ¢?) e, cosh(kLy, + kL, /2) + &sinh(kL, + kL,,/2)
Thus, the electric field penetrating the organic material is given by

E(r) = [~ik + ke:]p ()" (76)
Now we simply substitute this electric field into (65) and get the decay rate:

1 s oo Im& |d"|? k|Cy|?

Z=_"Im¢ 2k? 2l = — —— 77

e /L;,+L,,,/2 ¢ @I dz n?h a3 LY (77)

where we have considered the absorption only at L, /2 + L, (considering also the
organic material i < —L,,/2 — L, T would be half the size).
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Figure 11. The freeL-exciton lifetimer (ns) versus the in-plane wavevectsr (cm™1) for
three well widths:L,, = 20 A (dotged line),L,, = 40 A (dashed line).L,, = 60 A (solid line).
The other parameters arg, = 40 A, ¢, = 6,& = 4+ 3i.
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Figure 12. The freeL—excitoon (solid line) and freéZ——excoiton (dashed line) lifetimes (ns)
versus the barrier width, (A). K =10° cm™%, L,, = 60A, &, =6, & = 4+ 3i.

We evaluater from equation (77) for parameters representative of [I-VI semiconductor
QWs (analogously to section 2.k, ~ 6, d" ~ 0.1eap; for the organic material we take
&€ = 4+ 3i). We consider two casesd™ lying in the QW planek | d"™ (L-excitons)
and d'¢ perpendicular to the QW plane {excitons). TakingL, = 60 A, L, = 40 A,
we plot r; and r; as functions ofk for ¢, = 6,2 =4+ 3iandg, = 4,2 =6+ 3i in
figures 10(a) and 10(b). It is seen from the plot that the lifetime does not depend drastically
on the polarization and the real parts of the dielectric constants. Figure 11 shows that the
dependence ot is also weak, whileL, (figure 12), when it grows, gives an obvious
exponential factor (clearly seen from the hyperbolic functions in the denominators of (74),
(75)). The most interesting dependence is thakoiVe see that exhibits a minimum at
knin ~ 1/L;,. This dependence may be easily understood if one recalls that the dipole—dipole
interaction between two planes behaves like

V(k,z) ~ ke™* (78)

which, when substituted into the Fermi Golden Rule gives the correct asymptotick/ k
atk — 0 and exponential growth @t — oo.

Typical values ofk for the quasi-thermalized exciton distribution with temperature
100 K are~3 x 10°f cm™. We see that the corresponding lifetimes (tens of pico-
seconds) are much less than the exciton recombination rate which is about 100-200 ps in
[I-VI semiconductor QWSs, as reported by different authors ([7] and references therein, [37]).
Thus, the dipole—dipole transfer mechanism, considered above, proves to be efficient enough
to transfer a large fraction of the semiconductor excitation energy to the organic medium.
Moreover, the intraband relaxation of excitons due to the acoustic phonon scattering occurs
on timescales of the order of 20-30 ps at 10 K [37], which is larger than the minimal transfer
lifetime, obtained here (less than 10 ps fgr, ~ 10° cm™1). This makes it reasonable
to excite the QW in such a way as to produce the initial nonequilibrium distribution of
excitons withk = k,,,, tuning the frequency of the excitation pulse to exceed the energy
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E..c(kyin) Of the exciton withk = k,,;, by one LO-phonon frequenc®; o (since in [I-VI
semiconductors the free-carrier-to-exciton relaxation is governed mainly by LO-phonon
scattering and happens in times of about 1 ps [37—40]), or an integer multigly &f

if the exciton binding energy is larger th&$2;,. A numerical estimate for ZnSe gives
Eexe(kmin) — Eoxe(k = 0) ~ 1 meV, whileh2; o ~ 31 meV [37], so the kinetics of excitons
atk ~ k,;, is governed mainly by the acoustic phonons.
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Figure 13. As figure 11, but for the 1lI-V semiconductor compounes £ 11, d"¢ ~ 0.05¢ap,
all other parameters being the same as in figure 11).

Analogous calculations may be performed for the case of I1I-V semiconductor materials.
We takeg, ~ 11, d"° ~ 0.05¢ap and plot theL-exciton lifetime versus the wavevectbr
for several values ot.,, (figure 13, analogous to figure 10 for 1I-VI materials). All of the
other parameters are the same as in figure 10. We see that the lifetime is longer than that in
figure 10 by about an order of magnitude, which is due to the larger valueg ahde,.
However, the exciton recombination time in IlI-V materials is also larges—D ns [41]),
so the energy transfer discussed here is still efficient enough.

3.2. Localized excitons

Now we turn to the situation in which the QW width fluctuations and the alloy disorder
localize the wavefunction of the centre-of-mass exciton motion. If we denote dt(py),
which is no longer just a plane wave, the corresponding polarization is given by

e 2 2 Tz
P(r)=d /n—a%L—wcos’- (L—w>q>(r) (79)

which implies that®(r)) is normalized according to

/dz’f‘” |q>(’l’||)|2 = 1 (80)
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The solution of the Sclidinger equation for a particle in the random potential, caused by
the QW width fluctuations and the alloy disorder, is beyond the scope of the present paper
(much work has been done in this field; e.g. see [42] and references therein). We can
only state some general properties their;) should have: (i) it should be localized within
some distancd. 2 L, and as it corresponds to a ground state in some potential well;
(i) it should be smooth and without nodes. As a consequence, its spatial Fourier expansion
should contain mainly the components with wavevectors 1/L.

Expanding the wavefunctiof® (), the charge density(r) and the potentiap(r) into
plane waves

d’k o
() = @2 D™
d’k o
o) = [ Gy pr@E* (81)
de ik-r
p(r) = / 272 ok ()™
we again obtain equation (69), but the charge density is given by
P (2) = ks LuypoL @1 (1 + COSq2) (82)
o (2) = —q Ly poL @y Singz (83)

2 de
o= | —5—5- 84
=iz (84)

The solution is
¢1(2) = poL Py Cpe*ELr=hu/2 (85)
with the sameCy, given by (74), (75). For the decay rate we obtain

1 Img [t &’k
= d 2k? 2 86
s A z/ 202 lor (2)] (86)

from which
1 Iméd™)? 1 A’k
L3 ] (2m)?

v w?h 4}
It is possible to get some information about the decay rate (86) based only on general
properties of the wavefunction, mentioned above. We have three length scales in our
problem: L,, L, and L. First, we have the conditioh, < L. Since wavevectors with
kL > 1, being cut off by|®,|?, do not contribute to the integral, we may %dt, — O.
The subsequent analysis depends on the relation betivgand L.
If L, <« L, we may putkL, — 0 as well. Then we have

k| 2| C|2. (87)

X 2mi ky c? 2
- — — 88
L2 T F k 2 & (88)
and the integral may be estimated as
1 2Imé |d¥? 1 1 41mE |d>)? 1
1 _,2mEdtL 1 4lméEdTT L (89)
Tx REP? a2 L Tz h e a2 L

up to a numerical factoA ~ 1, determined by the detailed shapednf. We have set the
average value of over the wavefunctionb; to be 1/L and, if for the X-polarization we
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Figure 14. The localizedX -exciton lifetimer (ns) versus the localization lengih (A) (solid
line) along with the limiting cases « L, andL > L, (dashed lines)L,, < L, L, = 40 A,
ep =6, =4+3i.

assumed,, to be cylindrically symmetric (which may be considered as the average over the
realizations of disorder), then the numerical factor is the same for both cases.

In the opposite limit,L, > L (which also impliesL, > L,,), we may setd;, = &9
since the values d&, contributing to the integral, are determined®y (namely,k < 1/L;),
which in this limit takes the form

Cl(cX) Ikx 4

Tk 90
L2 Tk e+ G —epe il (90)
C;(CZ) 4

: 91
L —> (& + &p)€lo — (8 — gp)e kLo (91)
Estimating the integral, we have

1 1 Imé& dve 2 D 2
S oA me  |d"|* |Pr=ol ©2)
Tx wh|E+epl? af L3

where |®;_o|? ~ L2, which follows from the normalization condition. The expression for
1/t differs from this by an additional factor of 2 and the factbmay be different in the
two cases. It is determined by the valuestpt, and is bounded by

* £2 d¢

A=/ e T 2 (93)
o |(en/lep +E]) siNhE + (&/]ep + &) COShE|

7'[2 B o) 52 d&- o] %-2 d&- _ 77.'2

1_2_fo cosif & <A<fo sinffe 6 (94)

So we see that at « L, the decay rate is proportional #%?, while atL > L, it is
proportional toL ~1; therefore it has a maximum at sorhe~ L,. This is in agreement with
the results of the previous section, since the plane waves, giving the largest contribution to
the wavefunctiond (r) and thus determining the decay rate, have values of the wavevector



Excitons in hybrid organic—inorganic nanostructures 9397

0015 Il T 1 T T F T 1 1 1 I T 1 1 1 I 1T TF H

‘l i

- ‘ -

- l .

L i

n 001 —\‘ -

o L N

X L ]

- \

) ]

0.005 - \ =

- \ //// -1
\\__,_/-"

TZ N

O _I | S 1 b 11 I I N N l | I 1 F I I I I“

0 50 100 150 200 250

L, A

Figure 15. LocalizedX-exciton (solid line) and localized-exciton (dashed line) lifetimes
(ns) versus the localization length (A). L, = 10A, L, =40A, ¢, = 6,8 =4+ 3i.

of the order oft ~ 1/L and we have seen that the wavevectors corresponding to the shortest
lifetimes werek,,;, ~ 1/L,.

To illustrate these considerations, we choose a specific example of the localized
wavefunction—that of the ground state in the isotropic parabolic potential:

@y = VAx Le K172 (95)

which obviously has all of the necessary features mentioned at the beginning of this section.
For this wavefunction the integral in (86) may be evaluated numerically for arbitrary
parametersl, L,, L, (we recall that the only physically relevant ones dre> L,).

The results of the calculationr (versusL) are plotted in figures 14, 15 along with the
asymptotic dependencies foy, = 40 A, ¢, = 6, ¢ = 4 + 3i (we have set.,, — O for the

plots in figure 14, but a more specific vallig, = 10 A was chosen for figure 15). In the

limit L > L,, the coefficientA is /7 /2, while for L « L,, A was calculated numerically,

as given by (93).

We also plot the dependence, analogous to that in figure 15, for parameters typical of
[1I-V semiconductorsd /eap = 0.05 andg, = 11 (figure 16); analogously to the previous
section, we obtain larger lifetimes than those for 1I-VI semiconductors.

Calculations analogous to those for free and localized excitons may also be performed
for the case in which populations of free electrons and holes rather than bound excitons
are present. First, the decay rate of a single free electron—hole pair is determined from
equation (65), starting from the wavefunction being the direct product of two 2D plane
waves. Then the expression obtained has to be averaged over the proper momentum
distributions for electrons and holes. This was done in the approximation of an ideal
guasi-equilibrium Fermi gas, and the dipole—dipole lifetimes obtained turn out to be as long
as 300 ps (and larger) for 1I-VI semiconductors and about an order of magnitude larger for
[lI-V semiconductors.

Summarizing the results of this section, we can say that the kinetics of the initial free-
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Figure 16. As figure 15, but for the 11I-V semiconductor compounds, other parameters being
the same as for figure 15.

carrier population (produced, e.g., by the electrical pumping) is not significantly changed
by the presence of the organic medium, since the energy transfer from free carriers turns
out to be slower than the process of exciton formatied (ps). On the other hand, the
subsequent evolution of bound excitons is strongly affected by the presence of the organic
medium. In an isolated QW, excitons recombine for several hundred ps. In contrast to this,
excitons coupled to the organic medium efficiently transfer the larger part of their energy to
the organic molecules before they recombine inside the QW. For quantum wells, based on
the II-VI semiconductors and in a realistic geometry, such transfer may occur on timescales
of the order of 10 ps. This simple physical picture shows that the system studied here may
be promising for optical devices based on hybrid organic—inorganic structures, combining
good transport properties of semiconductors and large oscillator strengths characteristic of
organic materials to achieve efficient electroluminescence.

4. Conclusions

The method of OMBD combined with a careful substrate preparation and sample
characterization has been successful in growing layered systems including organic crystalline
materials (e.g., tetracene, perylene, fullerene, PTCDA). There is little doubt that in the future
the number of molecular species used will rapidly increase and that a large flexibility in the
design of novel types of structure will be achieved. In particular, hybrid multilayer systems
containing layers of organic and inorganic materials are widely used in different optical
devices [3]. However, the situation studied in this review, namely, that in which excitons
in OQW and IQW are resonant, is especially interesting, since it leads to several types of
new phenomenon.

We have discussed the linear and nonlinear optical properties of novel hybrid excitons
in organic—inorganic heterostructures. With respect to those of the usual semiconductor
guantum wells, a very strong enhancement of both the linear and nonlinear parts of the
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susceptibility is predicted. These results are rationalized in terms of the large oscillator

strength of Frenkel excitons and the low saturation density of Wannier excitons: these

two characteristics are exhibited by the hybrid resonances simultaneously. If successfully
synthesized, structures of the type considered here would exhibit pronounced nonlinearities
of potential technological interest. Moreover, the hybrid excitons are a promising system as

regards possible novel electro-optical and magneto-optical properties. We have also shown
that, due to the parity breaking in the hybrid organic—inorganic structure, second-order

nonlinearity is present, and thus there exists the possibility of second-harmonic generation.
We have also considered the new possibilities which may appear for microcavities containing
resonating organic and inorganic QWSs. In such structures we can expect a drastic reduction
of the relaxation time of excitons to produce states having a large radiative width and a

short fluorescence decay time.

The case of strongly broadened excitonic resonances in the organic material was also
considered. In this case the resonant dipole—dipole coupling leads to effidisterenergy
transfer from the IQW to the organic medium. We can also expect that the combination of
electrical pumping of excitons in inorganic QWSs with the fast relaxation and fluorescence
of excitons in organics will open up a new scenario of excitonic processes, of interest for
both basic science and device applications.

More detailed theoretical calculations are needed, but probably the crucial factor will be
the technological progress in the synthesis of such structures. We believe that this is a very
promising field of research and hope that the experimental efforts to grow and investigate
these novel systems will be successful.
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