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Abstract. We present a theoretical review of the properties of electronic excitations in
nanostructures based on combinations of organic materials with inorganic semiconductors,
having respectively Frenkel excitons and Wannier–Mott excitons with nearly equal energies.
We show that in this case the resonant coupling between organic and inorganic quantum wells
(or wires or dots) may lead to several interesting effects, such as splitting of the excitonic
spectrum and enhancement of the resonant optical nonlinearities.

First, we discuss the properties of hybrid Frenkel–Wannier–Mott excitons, which appear
when the energy splitting of the excitonic spectrum is large compared to the width of the
exciton resonances (the case of strong resonant coupling). Such peculiar excitations share at
the same time both the properties of the Wannier excitons (e.g., the large radius) and those of
the Frenkel excitons (e.g., the large oscillator strength). We discuss mainly two-dimensional
configurations (interfaces or coupled quantum wells) which are the most extensively studied.
In particular, we show that hybrid excitons are expected to have resonant optical nonlinearities
significantly enhanced with respect to those of traditional inorganic or organic systems. We also
consider analogous phenomena in microcavities where the exciton resonances are close to the
cavity photon mode resonance.

Next, we consider the case of weak resonant coupling and show the relevance of the Förster
mechanism of energy transfer from an inorganic quantum well to an organic overlayer. Such an
effect may be especially interesting for applications: the electrical pumping of excitons in the
semiconductor quantum well can be used to efficiently turn on the organic material luminescence.

1. Introduction

The need for systems having better optoelectronic properties to be used in applications
has been driving researchers in materials science to develop novel compounds and novel
structures. The progress in the field has been impressive, mainly due to the use of
innovative growth techniques such as molecular beam epitaxy (MBE) and the realization of
systems in two-dimensional (2D), one-dimensional (1D) and zero-dimensional (0D) confined
geometries. We have now many newly developed organic or inorganic structures with very
interesting properties. We mention here as a typical example the quest for efficient second-
harmonic generation (SHG) where we can see a very peculiar ‘competition’ in the use of
organic or inorganic materials. Inorganic semiconductors (e.g., GaAlAs, ZnCdSe) have been
used to design MBE asymmetric quantum wells (QWs) having values ofχ(2) much larger
than those of the corresponding bulk materials. Organic materials have also been used for
the same purpose: molecular charge-transfer excitations lead to a strong enhancement of
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SHG. From the theoretical point of view, scientists working independently with covalent or
molecular crystals have exploited actually the same basic idea, i.e. achieving a large change
of static dipole moment upon excitation. In the present paper, we discuss the possibility
of obtaining qualitatively new physical effects, potentially useful also for technological
applications, by ingeniously combining organic with inorganic materials in one and the
same hybrid structure.

The electronic excitations known as excitons play a fundamental role in the optical
properties of dielectric solids [1]. They correspond to a bound state of one electron and
one hole and can be created by light or can appear as a result of relaxation processes of
free electrons and holes, which, for example, may be injected electrically. There are two
models conventionally used to classify excitons—the small-radius Frenkel exciton model
and the large-radius Wannier–Mott exciton model. The internal structure of Wannier–Mott
excitons can be represented by hydrogen-like wavefunctions. Such a representation results
from the two-particle, Coulombic electron–hole states in a crystalline periodic potential.
The mean electron–hole distance for this type of exciton is typically large (in comparison
with the lattice constant). On the other hand, the Frenkel exciton is represented as an
electronic state of a crystal in which electrons and holes are placed on the same molecule.
We can say that Frenkel excitons in organic crystals have radiiaF , comparable to the lattice
constant:aF ∼ a ∼ 5 Å. In contrast, weakly bound Wannier excitons in semiconductor
QWs have large Bohr radii (aB ∼ 100 Å in III–V materials andaB ∼ 30 Å in II–VI
ones; in both casesaB � a). The oscillator strength of a Frenkel exciton is close to a
molecular oscillator strengthF , whereas the oscillator strengthf of a Wannier exciton
is usually much weaker: in a quantum wellf ∼ a3a−2

B L
−1F whereL is the QW width

(aB > L > a). Both types of exciton interact with lattice vibrations through exciton–phonon
coupling.

One of the main topics of our review is the optical nonlinearity due to exciton
resonances. In high-quality semiconductors as well as in organic crystalline materials,
the optical properties near and below the band gap are dominated by the exciton
transitions and this is also the case for organic and inorganic QWs (or wires or dots).
The excitonic optical nonlinearities in semiconductor QWs can be large because the
ideal-bosonic approximation for Wannier excitons breaks down as soon as they start
to overlap with each other, i.e., when their 2D densityn becomes comparable to
the saturation densitynS ∼ 1/(πa2

B) (nS is, typically, 1012 cm−2). Then, due to
phase-space filling (PSF), exchange and collisional broadening, the exciton resonance is
bleached. However, a generic figure of merit for the optical nonlinearities scales like
I−1
P (1χ/χ) where1χ is the nonlinear change in the susceptibility in the presence of

a pump of intensityIP . As 1χ/χ ∼ n/nS ∼ na2
B , but also n ∝ f IP ∝ a−2

B IP ,
such a figure of merit is nearly independent of the exciton Bohr radius [2]. As for
the Frenkel excitons in organic crystals, simply because they have small radii, they
have very large saturation density. Thus, pronounced PSF nonlinearities of the exciton
resonance in molecular crystals are practically impossible to achieve as very high excitonic
concentrations are needed. Of course, other mechanisms may effectively enhance the
optical nonlinearities of organic materials, but their discussion falls outside the scope of
this review.

Here we will consider hybrid structures in which Frenkel and Wannier excitons are
in resonance with each other and coupled through their dipole–dipole interaction at the
interface and through cavity photons in a microcavity. The basic idea is to realize the
formation of new eigenstates given by appropriate coherent linear combinations of large-
radius exciton states in the inorganic material and small-radius exciton states in the organic
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one. We can expect that these hybrid electronic excitations will be characterized by a
radius dominated by their Wannier component and by an oscillator strength dominated
by their Frenkel component. Thus, they can have at the same time a large oscillator
strengthF and a small saturation densitynS . In this way, the desirable properties
of both the inorganic and organic material unite and overcome the basic limitation
mentioned above for the figure of merit of the exciton resonance nonlinearities. One
of the most natural choices for implementing this idea is a layered structure with an
interface between a covalent semiconductor and a crystalline molecular semiconductor.
In such heterojunctions, there is obviously some cause for concern about the detrimental
effects that lack of material purity and structural quality would have on the formation and
the functional properties of the hybrid excitons. The realistic possibility of considering
such organic–inorganic crystalline structures has only recently arisen due to progress in
the development of the organic molecular beam deposition (OMBD) and other related
techniques. Such progress has led to a monolayer-level control in the growth of organic
thin films and superlattices with extremely high chemical purity and structural precision.
This opens up a wide range of possibilities in the creation of a new type of ordered
organic multilayer structure including highly ordered interfaces. It is well known that
the requirement of lattice matching places strong restrictions on the materials which can
be employed to produce high-quality interfaces using inorganic semiconductor materials.
This is due to the fact that they are bonded by short-range covalent or ionic forces. In
contrast, organic materials are bonded by weak van der Waals forces. This lifts such
restrictions and broadens the choice of materials that can be used to prepare organic
crystalline layered structures with the required properties (for more details and many
examples, see reference [3]). In the following sections, we will discuss at length the
electronic excitation spectra arising from the Frenkel–Wannier exciton hybridization in
different geometrical configurations: quantum wells, quantum wires and quantum dots.
At the same time, the nonlinear optical properties of hybrid excitons will be considered
in detail: we predict a large enhancement of the excitonic resonant nonlinearities, in some
cases of two orders of magnitude compared to those of traditional systems. A few other
results on the physics of hybrid excitons taken from the current literature will also be
presented.

We also consider the resonant interaction between Frenkel excitons in the organic QW
and Wannier–Mott excitons in semiconductor QW in a microcavity where organic and
inorganic QWs are separated. In this case the resonant interaction appears mainly through
the cavity photons and can be very strong if the cut-off frequency of the cavity photon is
close to the excitonic resonances. We demonstrate that in this case new hybrid Frenkel–
Wannier–Mott exciton–cavity photon states can be tailored to engineer the fluorescence
efficiency and relaxation processes.

In all of the cases mentioned above, we have assumed that the resonance splitting in
the exciton spectra is large in comparison with the relaxation width of the resonances (the
strong-coupling regime). However, for organic materials in many instances the width of
the excitonic resonances can be larger than possible frequency shifts or splitting. In such a
situation (the weak-coupling regime), instead of a coherent superposition of excitonic states,
the F̈orster energy transfer from the inorganic QW to the organic QW has to be considered.
We investigate this phenomenon in detail, considering the energy transfer to organics from
free and localized Wannier–Mott excitons as well as from unbound electron–hole pairs.
We show that this can produce efficient luminescence in the organic layers with electrical
current pumping of the inorganic material.
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Figure 1. The physical configuration under study.

2. 2D hybrid excitons

2.1. Electronic states and linear optics

Here we study the dipole–dipole interaction between an organic quantum well (OQW) and
an inorganic one (IQW) and demonstrate how new hybrid states arise [4]. The configuration
that we consider is the following. A plane semiconductor IQW of thicknessLw occupies
the region|z| < Lw/2, the z-axis being chosen to lie along the growth direction. All
of the space withz > Lw/2 is filled by the barrier material and that withz < −Lw/2
by the organic material in which the OQW is placed (figure 1). For simplicity, we treat
the organic molecules in the dipole approximation, neglecting the contribution of higher
multipoles to the interaction, and we consider the OQW as a single monolayer, i.e., as a
2D lattice of molecules at discrete sitesn, placed atz = −z0 < −Lw/2 (the generalization
to the case of several monolayers is easy). All of the semiconductor well–barrier structure
(z > −Lw/2) is assumed to have the same background dielectric constantε, while the
organic half-space (z < −Lw/2) is taken to have the dielectric constantε̃ (corresponding
to the organic substrate).

Due to the difference in electronic structure of the two QWs under consideration, one
may neglect the single-particle wavefunction mixing; in other words, the OQW and the IQW
states are assumed to have zero wavefunction overlap. Assuming a perfect 2D translational
invariance of the system, we classify the excitons according to their in-plane wavevectork.
Suppose that for some bands of Frenkel excitons in the OQW and Wannier–Mott excitons
in the IQW the energy separation is much less than the distance to other exciton bands.
Then we take into account only the mixing between these two bands. We choose as a basis
set the ‘pure’ Frenkel and Wannier states, i.e., the state in which the OQW is excited, while
the IQW is in its ground state (denoted by|F,k〉), and vice versa (denoted by|W,k〉), their
energies beingEF (k) andEW(k). We seek the new hybrid states in the form

|α,k〉 = Aα(k)|F,k〉 + Bα(k)|W,k〉 (1)

where α = ‘u’, ‘ l’ labels the two resulting states (upper and lower branches). The
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Schr̈odinger equation for the coefficientsA, B is then written as

(EF (k)− E)A(k)+ 〈F,k|Ĥint |W,k〉B(k) = 0

〈W,k|Ĥint |F,k〉A(k)+ (EW(k)− E)B(k) = 0
(2)

whereĤint is the Hamiltonian of the dipole–dipole interaction between the QWs. Solution
of (2) gives the energies of the upper and lower branches and the splitting1(k):

Eu,l(k) = EF (k)+ EW(k)±1(k)
2

1(k) ≡
√
(EF (k)− EW(k))2+ 402(k) (3)

where we use the notation0(k) ≡ |〈W,k|Ĥint |F,k〉| for the coupling matrix element. For
the orthonormalized new states the weighting coefficients are given by

|Au(k)|2 = |Bl(k)|2 = 1

2

(
1+ EF (k)− EW(k)

1(k)

)
(4)

|Al(k)|2 = |Bu(k)|2 = 1

2

(
1− EF (k)− EW(k)

1(k)

)
. (5)

To evaluate the matrix element0k we write the interaction Hamiltonian as

Ĥint = −
∑
n

p̂F (n) · Ê(n) (6)

where p̂F (n) is the operator of the dipole moment of the organic molecule situated at
the lattice siten, and Ê(n) is the operator of the electric field at the pointn, produced
by the IQW exciton. If we introduce the operator of the IQW polarizationP̂W(r), then
the operatorsÊ(n) and P̂W(r) are related to each other in exactly the same way as the
corresponding classical quantities in electrostatics:

Êi (r) =
∫

d3r′ Dij (r‖ − r′‖, z, z′)P̂ Wj (r′) (7)

where i, j = x, y, z, r‖ ≡ (x, y) andDij (r, r′) is the Green’s function appearing in the
analogous problem of classical electrostatics. It is equal to theith Cartesian component
of the classical static electric field at the pointr, produced by thej th component of the
classical point dipole, situated at the pointr′ and is connected to the Green’s functionG
of the Poisson equation in an inhomogeneous medium with the dielectric constantεij (r):

Dij (r, r′) = − ∂

∂xi

∂

∂x ′j
G(r, r′) (8)

∂

∂xi
εij (r)

∂

∂xj
G(r, r′) = −4πδ(r − r′). (9)

Since our system is translationally invariant in two dimensions, it is convenient to consider
the Fourier transform:

Dij (r‖ − r′‖, z, z′) =
∫

d2k

(2π)2
Dij (k, z, z′)eik·(r‖−r′‖) (10)

and analogously forG(r‖ − r′‖, z, z′). ThenG(k, z, z′)eik·r‖ is the potential, produced by a
charge-density waveρ(r) = δ(z − z′)eik·r‖ . In our case the dielectric constant is a simple
step function

εij (r) =
{
ε̃δij z < −Lw/2
εδij z > −Lw/2

(11)
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and the potential may be readily found from Poisson’s equation(
d2

dz2
− k2

)
G(k, z, z′) = −4πδ(z− z′)

ε(z)
(12)

with the usual electrostatic boundary conditions at the interfacez = −Lw/2 (continuity of
the tangential component of the electric field−ikG and of the normal component of the
electric displacement−ε(z) ∂G/∂z). The Green’s functionDij for z < −Lw/2, z′ > −Lw/2
is then given by

Dij (k, z, z′) = 4π

ε + ε̃ kek(z−z
′)
(

iki
k
+ δi,z

)(
ikj
k
+ δj,z

)
. (13)

Thus, the matrix element of̂Hint that we are interested in can be written as

〈F,k|Ĥint |W,k〉 = −
∑
n

∫
d3r 〈F,k|p̂i(n)|0〉Dij (n− r‖,−z0, z)〈0|P̂ Wj (r)|W,k〉.

(14)

The matrix element of the IQW polarization between the ground state|0〉 and |W,k〉
for the 1s exciton with Bohr radiusaB is equal to [5, 6]

〈0|P̂W(r)|W,k〉 =
√

2

π

dvc

aB

eik·r‖
√
S
χe(z)χh(z) (15)

where
√

2/(πa2
B) is the value of the 1s wavefunction of the relative motion of the electron

and hole, taken atr‖ = 0; χe(z), χh(z) are the envelope functions for the electron and hole
in the IQW confinement potential (we assume the IQW to be thin, so that the transverse and
the relative in-plane motion of the electron and hole are decoupled) andS is the in-plane
normalization area. Finally,

dvc =
∫
uc

u∗v(r)(−er)uc(r) d3r (16)

is the matrix element of the electric dipole moment connecting the conduction and valence
bands (dvc is taken to be independent ofk, uc (v) are the Bloch functions for the conduction
(valence) band extremum and the integration in (16) is performed over the unit cell). Its
Cartesian componentsdvci (i = x, y, z) may be expressed in terms of the Kane energy
E0 [5]:

|dvci |2 =
e2h̄2E0c

2
i

2m0E2
g

(17)

wherem0 is the free-electron mass,Eg is the energy gap between the conduction and
valence bands andci is the appropriate symmetry coefficient. In semiconductors with the
zinc-blende structure,chhx = chhy = 1/

√
2, chhz = 0 (heavy holes) andclhx = clhy = 1/

√
6,

clhz =
√
(2/3) (light holes). We see that only light holes can contribute to thez-component

of the IQW polarization.
For the Frenkel exciton the dipole moment matrix element, contributing to the matrix

element (14), is given by

〈F,k|p̂i(n)|0〉 = e−ik·n
√
N
dF∗ = e−ik·n

√
S
aFd

F∗ (18)

wheredF is the transition dipole moment for a single organic molecule (analogous todvc

for the semiconductor),N is the total number of sites in the lattice andaF is the lattice
constant, which may be considered as the radius of the Frenkel exciton.
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Now we can write out the final expression for the coupling matrix element:

〈F,k|Ĥint |W,k〉 = −
√

2

π

dF∗i
aF

dvcj

aB

∫
dz Dij (k,−z0, z)χ

e(z)χh(z). (19)

From equations (13), (19) we see that the only contributing polarizations for the semi-
conductor are those alongk (L-modes) and along the growth directionz (Z-modes, only
for the light holes, according to equation (17)). For simplicity we take the electron and hole
confinement wavefunctions for the lowest subbands in the approximation of an infinitely
deep IQW:

χe(z)χh(z) = 2

Lw
cos2

(
πz

Lw

)
(20)

and assume the transition dipole moment in the organicsdF to be real (which is always
possible with an appropriate choice of molecular wavefunctions). Without loss of generality
we may take the vectork along thex-axis. Evaluating the integral in (19), we obtain the
interaction parameter0L,Z for theL- andZ-modes:

0L(Z)(k) = 8
√

2π

ε + ε̃
e−kz0 sinh(kLw/2)

1+ (kLw/2π)2
|dvcx(z)|

√
(dFx )

2+ (dFz )2
aF aBLw

. (21)

It is seen that0(k) has a maximum0max at k = kmax . The value ofkmax for arbitrary
z0 andLw may be found numerically; forz0 − Lw/2 > 0.1Lw it is well described by the
formula

kmax ' 1

Lw
ln

(
2z0+ Lw
2z0− Lw

)
(22)

while in the limit z0 ' Lw/2 we havekmax ' 2.4/Lw.

Figure 2. The interaction parameter0(k) for dvc = 12 D (D≡ debye),dF = 5 D, aB = 25 Å,
aF = 5 Å, Lw = 10 Å, z0 = 10 Å, ε∞ = 6, ε̃∞ = 4.
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Figure 3. The dispersionEu,l(k) of the upper and lower hybrid exciton branches (solid lines)
and that of the unperturbed Frenkel and Wannier excitons (dotted lines). The ‘weight’ of the
FE component in the lower branch|Al(k)|2 is shown by the dashed line. The parameters are
the same as in figure 2 (mW = 0.7m0); the detuningδ = 10 meV.

We approximate the WE dispersion by a parabola with the in-plane effective mass
mW = me +mh, me (h) being the electron (hole) mass, and neglect the FE dispersion since
the typical masses are(5–100)m0:

EW(k) = EW(0)+ h̄2k2

2mW
EF (k) = EF (0) EF (0)− EW(0) ≡ δ. (23)

We will measure all energies with respect toEW(0). The dispersion of the hybrid states (3)
can be written as

Eu,l(k)− EW(0) = δ

2
+ h̄2k2

4mW
±
√(

δ

2
− h̄2k2

4mW

)2

+ 02(k). (24)

To obtain numerical estimates we choose the following values of parameters. For the
IQW those representative of II–VI semiconductor (e.g., ZnSe/ZnCdSe) quantum wells are
taken [7]: ε = ε∞ = 6, dvc/aB ≈ 0.1e (which corresponds todvc ' 12 D and a Bohr
radius of 25Å), the exciton massmW = 0.7m0 and the well widthLw = 10 Å. For the
organic part of the structure, we take parameters typical of such media (e.g., see [3, 8, 9]):
ε̃ = ε̃∞ = 4, the transition dipole for the molecules in the monolayerdF = 5 D, aF = 5 Å
and z0 = 10 Å. We plot 0(k) for these values of the parameters in figure 2. We see
that0max ' 11 meV. The dispersion curvesEu,l(k) along with the FE weight in the lower
branch|Al(k)|2 for three different detuningsδ = 10 meV, δ = 0 andδ = −10 meV are
plotted in figures 3–5.

For δ > 0 the properties of the excited states are changed drastically. In this case
the zero-approximation dispersion curves for FE and WE cross at the pointk = k0 =√

2mWδ/h̄2. At k = 0 the upper states are purely F-like and the lower states W-like; at
k ∼ k0 they are strongly mixed and a large splitting of their dispersion curves is present,
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Figure 4. As figure 3, but forδ = 0.

Figure 5. As figure 3, but forδ =
−10 meV.

1(k0) ∼ 20(k0), and for largek (k � k0) they ‘interchange’: the upper branch becomes
W-like with the quadratic dispersion and excitations of the lower branch tend to FE. If
δ < 0, thenEW(k) > EF (k) for all k and no crossing occurs;Eu(k) closely follows the
WE dispersion and|Au(k)|2� 1; the lower state is FE-like.

A nontrivial feature of the lower-branch dispersion is a minimum away fromk = 0,
which is always present forδ 6 0 as well as for some positive values ofδ, 0 < δ < δcr ,
and is at its deepest forδ = 0. The critical value ofδ may be found if one looks at the
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values of the derivatives ofEl(k) at k = 0. It turns out that
dEl(0)

dk
= 0 (δ 6= 0)

d2El(0)

dk2
< 0 (δ < δcr)

d2El(0)

dk2
> 0 (δ > δcr)

(25)

andδcr when the minimum ‘splits’ offk = 0 is given by

δcr =
(

d0(0)

dk

)2 2mW
h̄2 . (26)

For our parameters,δcr ' 16 meV. For large negative values ofδ � −0max , the lower-
branch dispersion atk �

√
2mWδ/h̄2 may be approximated as

El(k)− EW(0) ' −|δ| − 0
2(k)

|δ| . (27)

So, the depth of the minimum for large|δ| is 02
max/|δ| while for smallδ it is of the order

of 0max and we see that effective range ofδ when the minimum is the most pronounced
is −0max . δ < δcr . As a consequence, at low temperatures and under optical pumping
at frequencies above the excitonic resonance, excitons will accumulate in this minimum,
which can be detected, for example, by pump–probe experiments. The fluorescence from
these states should increase with temperature, since states with smallk become populated.

If an incident electromagnetic wave with the electric fieldE(r) = E0eiQ·r is present,
then the interaction with the hybrid structure is described by the Hamiltonian (neglecting
the local field corrections)

Ĥem = −E0 ·
(∑

n

p̂F (n)eiQ‖·n +
∫

dz
∫

d2r‖ P̂W(r)eiQ‖·r‖
)

(28)

where we have neglected thez-dependence of the incident field since the thickness of our
structure is much less than the light wavelength. The corresponding matrix element is
different from zero only ifk = Q‖ and in this case is equal to

〈α,k|Ĥem|0〉 ≡ −E0 ·Mα
k = −E0 ·

(
A∗α(k)M

F + B∗α(k)MW
k

)
(29)

where

MF =
√
NdF∗ =

√
S

aF
dF∗ (30)

MW
k =

√
2

π

√
S

aB
dvc∗

∫
χe∗(z)χh∗(z) dz (31)

are the optical matrix elements for the isolated OQW and IQW respectively, which are
independent ofk. Usually we haveMF � MW sinceaF � aB , and in the region of strong
mixing, the oscillator strengthf α of a hybrid state is determined by its FE component:

f α(k) ' |Aα(k)|2f F . (32)

At the crossing pointk = k0 (for δ > 0) we have|Aα(k0)|2 = 1/2 and the FE oscillator
strength is equally distributed between the two hybrid states. For the hybrid exciton radii
the opposite relation holds. Calculating the expectation value of the exciton radius squared
r̂2 in the state|α,k〉 we obtain

〈α,k|r̂2|α,k〉 = |Aα(k)|2〈F,k|r̂2|F,k〉 + |Bα(k)|2〈W,k|r̂2|W,k〉 ' |Bα(k)|2a2
B (33)
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sinceaB � aF and we neglect the latter. Cross terms do not appear since we neglect the
single-particle wavefunction mixing between the two QWs.

We see that the new states can possess both large oscillator strengths and large exciton
radii. This effect is especially pronounced if the crossing of the FE and WE dispersion
curves occurs for the value of the wavevector close to that of the maximum of the coupling
strength:k0 ' kmax . Sincek0 is determined by the detuningδ, andkmax , in turn, depends
on Lw and z0 (equation (22)), a special choice of these parameters should be made for
maximizing the effect. Also, in order to take advantage of the hybrid states in optics,
the wavevector of light in the mediumq = n∞ω/c (n∞ being the background refraction
index) should not be far fromk0. Usually, near excitonic resonances,q < k0 and special
care should be taken to overcome this difficulty (e.g., using a coupled diffraction grating
with period 2π/k0 [10] or a prism). We mention, however, that even in the region of
small wavevectors in which the 2D excitons are radiative, the hybridization may be realized
not due to the instantaneous dipole–dipole interaction, but due to the retarded interaction
stemming from the exchange of photons. Such a situation has been analysed (even in the
nonlinear regime) with an appropriate transfer-matrix approach, which is equivalent to the
solution of the full Maxwell equations [11].

As regards the choice of materials for the implementation of the system considered
here, examples of molecular substances having small-radius (6 5 Å) excitons with energies
of a few eV, among those already successfully grown [3] as crystalline layers on a
variety of inorganic (including semiconductor) crystals, are the acenes, such as tetracene
(2 eV) or pentacene (1.5 eV), the metal phthalocyanines, such as VOPc (1.6 eV) or CuPc
(1.8 eV), and the tetracarboxylic compounds, such as NTCDA (3.1 eV) or PTCDA (2.2 eV).
Semiconductors having large-radius excitons with matching energies are, for instance, the
III–V and II–VI ternary solid solutions such as GaAlAs, ZnCdSe and ZnSSe [12]; beside
a judicious choice of alloy composition and well thickness, a fine tuning of the resonance
condition could be achieved by applying an external static electric field along the growth
direction (the quantum-confined Stark effect [13]; for hybrid excitons it has been considered
in reference [14]). A major experimental problem is the control of the interface quality:
the inhomogeneous broadening should remain small and the in-plane wavevectork a
(sufficiently) good quantum number; organic superlattices with high-quality interfaces have
been demonstrated [3]. The necessary condition for the hybrid states to be observable is
that the exciton linewidths must be smaller than the splitting1(k). This is the case in the
present calculations, where fork0 = kmax we have1(k0) = 20max ' 20 meV, while in
inorganic QWs the homogeneous linewidth at low temperatures is∼1 meV [15, 16]. The
nonradiative linewidth of a 2D Frenkel exciton in an OQW can also be small: in the case
of a 2D exciton in the external monolayer of anthracene, this linewidth at low temperatures
is∼2 meV [17]. In principle, apart from the resonance condition and the large difference in
excitonic radii, the present model demands no specific requirements and the rapid progress
in the growth of organic crystalline multilayers justifies some optimism about its concrete
realization.

We also mention here the work of D’Andrea and Muzi [18], where the effects of the
exciton–phonon interaction in hybrid systems were studied. In this work the resonant Raman
spectroscopy is also suggested as a tool for studying hybrid organic–inorganic QWs.

2.2. Nonlinear optics

2.2.1. The resonantχ(3)-nonlinearity. From the results of the previous subsection we may
expect that the exciton hybridization should strongly modify the nonlinear optical properties
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of the structure under consideration. Indeed, hybrid excitons can combine both a large
oscillator strength, which makes it easy to produce large populations, and a large radius,
which, in turn, leads to low saturation densities. In this subsection we analyse the situation
quantitatively [19], calculating the response of the interband polarizationP = PW + P F

to the external driving electric field (corresponding to a cw experiment)

E(r, t) = E0eiQ·r−iωt + CC (34)

in the presence of a large density of excitations using the standard technique of
semiconductor Bloch equations [13, 20]. Since we are considering a cw experiment, the
populations are stationary and may be treated as parameters in the equation for the time-
dependent interband polarization.

First, we express the operator of the electron–hole interband polarizationP̂W(r) in
terms of the electron and hole creation and annihilation operators in the envelope function
approximation, following the standard procedure [5, 20]:

P̂W(r) = d
vc

S
χe(z)χh(z)

∑
k,q

eik·r‖ ĥ−q ĉk+q + HC. (35)

Hereχe(z), χh(z) are electron and hole wavefunctions in the given IQW subbands (resonant
with the FE),ĉk andĥk are annihilation operators for an electron and hole with the in-plane
wavevectork in the subbands under consideration,S is the in-plane normalization area
and dvc is the matrix element (16). We do not take into account the spin degeneracy,
considering thus the polarization produced by electrons and holes with a given spin (thus,
the final expression for the susceptibility should be multiplied by two). An analogous
expression for the OQW polarization is

P̂ F (r) = dF

aF
√
S
δ(z+ z0)

∑
k

eik·r‖B̂k + HC (36)

whereB̂k is the annihilation operator for the Frenkel exciton, which is assumed to be tightly
bound.

Besides the term of the Hamiltonian describing free Frenkel excitons and free electron–
hole pairs (with the single-particle energiesEF (k), εe(k) and εh(k) correspondingly), the
Hamiltonian that we consider here includes the following.

(i) The Coulomb interaction between electrons and holes:

ĤCoul = 1

2S

∑
q 6=0

v(q)
∑
k,k′
(ĉ
†
k+q ĉ

†
k′−q ĉk′ ĉk + ĥ†k+qĥ†k′−qĥk′ ĥk − 2ĉ†k+qĥ

†
k′−qĥk′ ĉk) (37)

v(q) = 2πe2

ε0q
(38)

whereε0 is the static dielectric constant of the IQW.
(ii) The dipole–dipole interaction between the QWs, as follows from the equations (6)

and (7):

Ĥhyb =
∑
k

Vhyb(k)B̂
†
k

∑
q

ĥ−q ĉk+q + HC (39)

Vhyb(k) = −
dF∗i dvcj

aF
√
S

∫
dz Dij (k,−z0, z)χ

e(z)χh(z) (40)

which corresponds to (19) with
√

[2/(πa2
B)] replaced by 1/

√
S since we use plane waves as

the basis for the semiconductor states. Of course, this interaction is also of Coulomb nature,
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but since we treat the OQW and the IQW as completely different systems and neglect all
effects of electronic exchange between them, these pieces of the Hamiltonian are separate.

(iii) The interaction with the driving electric field (34):

Ĥdr = −(E0 ·MF )e−iωt B̂
†
Q‖ − (E0 ·M eh)e−iωt

∑
q

ĉ
†
Q‖+qĥ

†
−q + HC (41)

M eh = dvc∗
∫
χe∗(z)χh∗(z) dz MF =

√
S

aF
dF∗ (42)

where we again neglect thez-dependence of the field and the wavevector dependence of
M eh.

Given the Hamiltonian, we can write down the equations of motion for the Heisenberg
operators. The polarization is obtained by averaging the expressions (35), (36) over the
equilibrium density matrix. The result is expressed in terms of the polarization functions〈

ĥ−q(t)ĉk+q(t)
〉
= PWk (q)

〈
B̂k(t)

〉
= PFk . (43)

Average values of the four-operator terms are factorized in the Hartree–Fock approximation
and are expressed in terms of the polarization functions and the populations defined by〈

ĉ†q(t)ĉq′(t)
〉 = δqq′neq 〈

ĥ†q(t)ĥq′(t)
〉
= δqq′nhq. (44)

Here the averages with different wavevectors correspond to the intraband polarization, which
is far off resonance and may be neglected. Since the electric field excites only states with
the given total in-plane wavevectorQ‖, from now on we setk = Q‖. As a result, we
obtain generalized Bloch equations for the polarization functions:

i h̄
dPFk

dt
= EF (k)PFk + Vhyb(k)

∑
q

PWk (q)− (E0M
F )e−iωt (45)

i h̄
dPWk (q)

dt
= Ĥ0PWk (q)+ Ĥ1PWk (q)+ (1− nek+q − nh−q)

[
V ∗hyb(k)PFk − (E0M

eh)e−iωt
]
(46)

Ĥ0PWk (q) ≡ [εe(k + q)+ εh(−q)] PWk (q)−
∑
q′

v(q − q′)
S

PWk (q′)

Ĥ1PWk (q) ≡ −
[∑
q′

v(q − q′)
S

(nek+q′ + nh−q′)
]
PWk (q)

+ (nek+q + nh−q)
∑
q′

v(q − q′)
S

PWk (q′).

Here the ‘Hamiltonian’Ĥ0 describes the evolution of the polarization in an isolated IQW in
the absence of electron–hole populations and corresponds to the Wannier equation [20]. The
resonant Wannier exciton wavefunction in the momentum space8k(q) is its eigenfunction
with the eigenvalueEW(k). The ‘Hamiltonian’ Ĥ1 describes the nonlinear many-particle
corrections. It is proportional to the populationsne, nh and we treat it perturbatively,
keeping only the first-order corrections to the eigenfunctionδ8k(q) and to the eigenvalue
δEW(k). Since populations are proportional to the intensity of the applied field|E0|2, our
calculation describes a third-order nonlinearity.
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We seek the solutions depending on time as e−iωt . The solution forPWk (q) may be
expressed in terms of the orthonormal basis of eigenfunctions ofĤ0+ Ĥ1. Picking up just
the resonant term, we may write

PWk (q) = uWk
(
8k(q)+ δ8k(q)

)
e−iωt (47)

uWk e−iωt =
∑
q

(
8∗k(q)+ δ8∗k(q)

)
PWk (q) (48)

PFk = uFk e−iωt . (49)

Then equations (45), (46) are reduced to(
h̄ω − EF (k)

)
uFk = VFW(k)uWk − JF(

h̄ω − EW(k)− δEW(k)
)
uWk = βkV ∗FW (k)uFk − βkJW

(50)

where we have introduced the coupling matrix element

VFW(k)+ δVFW (k) = Vhyb(k)
∑
q

(
8k(q)+ δ8k(q)

)
(51)

and the effective driving forces

JF = E0 ·MF JW + δJW = E0 ·M eh
∑
q

(
8∗k(q)+ δ8∗k(q)

)
(52)

and also the Pauli blocking factor given by

βk =
(∑

q

(1− nek+q − nh−q)8∗k(q)
)/(∑

q

8∗k(q)
)
. (53)

In the low-density limit and withE0 = 0, these equations correspond to the eigenvalue
equation (2) with the coupling matrix elements given by (19), since for 1s excitons

8k(q) =
√

8πa2
B

S

1

(q2a2
B + 1)3/2

∑
q

8k(q) =
√

2S/(πa2
B). (54)

Solving the system (50), we obtain for the polarization of the structure under consideration
(per unit area)

P si (r‖) ≡
∫ 〈

P̂ Fi (r)+ P̂ Wi (r)
〉

dz ' uFkM
F∗
i

S
e−iωt+ik·r‖ + CC

= χij (ω,k)E0je
−iωt+ik·r‖ + CC (55)

where we have retained only the term proportional to|MF |2 since|JW | � |JF |. Finally, we
obtain for the susceptibility (not forgetting the factor of 2 originating from spin degeneracy
as mentioned at the beginning of this subsection)

χij (ω,k) = 2
dF∗i dFj

a2
F

EW(k)+ δEW(k)− h̄ω
(EW(k)+ δEW(k)− h̄ω)(EF (k)− h̄ω)− βk|VFW(k)+ δVFW (k)|2 .

(56)

In equation (56) the nonlinearities appear through the blue-shiftδEW , the blocking
factor β and the modification of the hybridizationδVFW due to the correctionδ8; all
of these effects are typical of Wannier excitons [13], but here they belong to the hybrid
excitons which also have a large oscillator strength characteristic of Frenkel excitons. When
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only excitons are present (i.e., under resonant excitation at low temperature), the nonlinear
corrections can be calculated to first order in thens with

nek+q = nh−q '
nT S

4
|8k(q)|2 (57)

wherenT is the total density of electron–hole pairs and the factor 1/4 takes into account
electron (and hole) spin degeneracy of two and an equal population of resonant FE and WE.
In terms of the previous subsection, this corresponds to the situation whenk ' k0; thus
EF (k) ' EW(k), |Aα|2 ' |Bα|2 ' 1/2 and|uFk |2 ' |uWk |2 ' (nT S)/4. The blue-shiftδEW
is given by the expectation value ofH1 on8k(q) and reduces to

δEW ' 0.48Ebπa
2
BnT (58)

whereEb is the binding energy of a 2D Wannier exciton. The blocking factor is calculated
from equation (53) and turns out to be

βk ' 1− 0.57πa2
BnT . (59)

The effect ofδVFW can be estimated [13] by writingδ8k(q) as a sum over all continuous
and discrete excitonic states which are then approximated by plane waves in the expression
for |VFW + δVFW |2, giving

|VFW + δVFW |2 ' (1− 0.48πa2
BnT )|VFW |2. (60)

Close to resonance (denoting the detuning ¯hω − EW(k) by 1E), equation (56) can be
approximated by

χij (ω,k) = −2
dF∗i dFj

a2
F

1E

1E2− |VFW |2

×
[

1− πa2
BnT

(
1.05|VFW |2− 0.48Eb1E

1E2− |VFW |2 + 0.48Eb
1E

)]
= χ(1)ij (ω,k)

(
1− nT

nS

)
(61)

where χ(1)ij (ω,k) is the susceptibility of the hybrid structure atnT = 0 (the linear
susceptibility) andnS is the saturation density. The characteristic feature of the
expression (61) is the presence of the factor(dF /aF )

2 in χ(1) instead of(dvc/aB)2 in the
analogous expression for an isolated IQW. This leads to the enhancement of the absorption,
determined by Imχ(1). Thus, while the saturation density is comparable to that of Wannier
excitons (nS ∼ 1/a2

B), the density of photogenerated electron–hole pairs, for a given light
intensity, can be two orders of magnitude larger (by a factor∼(aB/aF )2); for the same
reason, the linear susceptibilityχ(1) can also be two orders of magnitude larger. Therefore,
the present theory substantiates the intuitive expectation of very pronounced nonlinear
optical properties of the hybrid excitons.

While the range of validity of equation (61) (with respect to variations of1E and
nT ) is rather limited, the expression forχ given by equation (56) holds true as long
as the basic approximations of the present approach are tenable. These are, in addition
to the first-order perturbation theory with respect to the excitation densitynT , the usual
Hartree–Fock decoupling in the equations of motion adopted in equations (45), (46), the
subsistence of well defined individual excitons (valid only fornT . nS) and the neglect of
screening due to the reduced screening efficiency of a two-dimensional exciton gas [13, 20].
Numerical examples of the predictions of equation (56) have been obtained using the values
of semiconductor parameters representative of III–V semiconductor (e.g., GaAs/AlGaAs)
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Figure 6. Real and imaginary parts of the 2D susceptibilityχ near the hybrid exciton resonances
in the linear regime (solid lines), for medium excitation density (nT = 1011 cm−2; dotted lines)
and for high excitation density (nT = 2× 1011 cm−2; long-dashed lines). The other parameters
aredvc = 20 D, aB = 60 Å Eb = 20 meV,ε∞ = 11; the rest are the same as in the previous
subsection. The linewidths ¯hγW = h̄γF = 2 meV.

Figure 7. Real and imaginary parts ofχ in the linear regime (solid lines) and for high excitation
density (n = 2× 1011 cm−2; long-dashed lines); in the first case ¯hγW = 1 meV, while in the
second case ¯hγW = 3 meV.

quantum wells, since the necessary information on homogeneous linewidths of excitons in
II–VI QWs is not currently available to the authors. Namely, we setε∞ = 11, dvc = 20 D,
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the Bohr radiusaB = 60 Å and the binding energy is taken to beEb ' 20 meV; the rest
are the same as in the previous subsection. This gives|VFW | ' 4 meV atk = 107 cm−1.
Assuming a phenomenological linewidth ¯hγW = h̄γF = 2 meV for both excitons, figure 6
shows the split resonance of the hybrid excitons at different excitation densities (linear
regime,nT = 1011 cm−2 andnT = 2× 1011 cm−2); it is noticeable, in particular, that for
vanishing excitation density the mixing is complete and the oscillator strength is equally
shared by the two peaks, whereas for high excitation density, due to the small blue-shift of
the WE, the stronger line corresponds to the lowest (more Frenkel-like) hybrid exciton.
Figure 7 shows the effect of a density-dependent broadening of the Wannier exciton:
h̄γW = 1 meV at low excitation densities and ¯hγW = 3 meV at high excitation density [21]
(h̄γF being fixed at 2 meV). From numerical estimates such as those shown in figures 6 and 7,
we obtain for the relative nonlinear change in the absorption coefficient close to resonance
|1α|/α ∼ 10−11 cm2 nT , which is analogous to the case of a semiconductor multiple
quantum well. However, for a given pump intensity, the 2D density of photogenerated
excitonsnT in our case of hybrid excitons is about two orders of magnitude larger because
the oscillator strength of hybrid excitons is comparable to that of Frenkel excitons rather
than that of Wannier excitons.

A similar theoretical approach can be used to calculate the dynamical Stark effect for
hybrid excitons, which shows qualitative and quantitative differences with respect to the
case of the usual inorganic semiconductor QWs [22].

2.2.2. Second-order susceptibilityχ(2). As was already mentioned, the calculations,
performed here, correspond to the third-order nonlinearity. But the hybrid system considered
here has also a nonzero second-order susceptibilityχ(2). For such structure,χ(2) 6= 0 even
if the original OQW and IQW are centro-symmetric and the second-order processes are
forbidden by parity conservation. Such a phenomenon can take place because the resonant
dipole–dipole coupling breaks the symmetry along the growth direction. Of course, any
interaction between the OQW and the IQW can be responsible for symmetry breaking.
However, the resonant dipole–dipole coupling considered here is probably the strongest
among the possibilities. In a geometrical sense, this system is analogous to an asymmetric
semiconductor QW. The calculation ofχ(2) for such a system can be found in reference [23]
and the calculation ofχ(2) for the hybrid system may be performed following the lines of
the latter work.

A detailed calculation of the second-order nonlinear susceptibility of the hybrid structure
will be published elsewhere. Here we restrict ourselves to some qualitative remarks. The
general microscopic expression for thenth-order susceptibility containsn+1 dipole moment
matrix elements, involvingn intermediate states. For the linear susceptibility there is only
one intermediate state, and if the latter is a hybrid one, the corresponding dipole matrix
elements are determined mainly by the Frenkel component of the hybrid state. Thus,
the linear susceptibility of the hybrid structure contains the factor(dF /aF )

2, as is seen
from equation (61). For the second-order nonlinear susceptibilityχ(2) one must have two
intermediate states or three virtual transitions. One of them may be a hybrid one, and as long
as the materials under consideration have no static dipole moments, the other intermediate
state has to be an excited state of the IQW, which is not resonant with the Frenkel exciton.
Hence, the result will be proportional todF /aF ; the other two virtual transitions will give
the factor, coinciding with that for an isolated IQW. One may apply analogous arguments
to the case of the third-order nonlinearity: of three intermediate states needed, one may be
the hybrid one, the second may be the ground state and the third one may be again the
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hybrid state (such a scheme corresponds to the Kerr nonlinearity). Thus, one should obtain
a factor(dF /aF )4. Indeed, in equation (61) we have(dF /aF )2 in χ(1) and another factor,
(dF /aF )

2, comes fromnT when the latter is expressed in terms of the incident electric field.
There exists another mechanism for second-harmonic generation. It does not require

parity breaking, since the optical quadratic nonlinearity appears due to the contribution of
spatial derivatives of the electric field to the nonlinear response [24, 25]. It works also in the
case of an isolated symmetric QW and corresponds to a higher multipole contribution rather
than the dipole one, which is usually considered. The hybrid system will again have an
advantage here because of the increase in the oscillator strength due to the Frenkel exciton
component.

2.3. Hybrid excitons in other heterostructures

Hybrid states of Frenkel and Wannier–Mott excitons were also considered for other
geometries, such as quasi-1D parallel organic and inorganic quantum wires [26] as well
as in a spherical system (quantum dot) [27]. We do not analyse here the experimental
possibilities of constructing such systems and mention only some essential points which are
different from those in the plane geometry studied above.

An important feature of the hybrid states in quasi-1D systems is the fact that the matrix
element of the resonant dipole–dipole coupling between the quantum wires is different from
zero even at zero wavevector (which is not the case for 2D systems). This makes it possible
to excite these states directly without involving any special methods (such as using coupled
gratings or attenuated total reflection). Evidently, an analogous situation arises in the case
of quantum dots, where the states cannot be described by the wavevector at all.

In reference [27] the third-order nonlinear susceptibilityχ(3) for a semiconductor
quantum dot covered with organic material was found. In this work it was assumed that the
inhomogeneous broadening in the organic material is absent and it is possible to consider
Frenkel excitonic states. Similarly to the 2D case (section 2.2), a strong enhancement of
χ(3) near the hybrid exciton resonance was predicted.

Figure 8. A schematic diagram of microcavity-embedded organic and inorganic quantum wells.
The mirrors are simply described by a very high dielectric constantε � ε.

2.4. Microcavity configurations

The structure described in section 2.1 presents the technologically challenging problem of
growing high-quality organic–inorganic heterojunctions only a few nanometres apart. A
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more promising way of realizing a hybrid exciton system is to couple Frenkel and Wannier
excitons through a microcavity (MC) electromagnetic field [28]. Strong exciton–radiation
interactions are observed in microcavities [29] and we can expect hybridization to arise not
due to the Coulombic short-range interaction, but due to the strong long-range interaction
stemming from virtual-cavity-photon exchange. For cavity-embedded QWs, the fabrication
problems would be much alleviated as their separation can be of the order of an optical
wavelength. For the sake of simplicity, however, in the following discussion we assume
that both QWs lie at the centre (z ' 0) of a single MC at a distanced � λ from each other
(see figure 8). This situation is qualitatively equivalent to that of two coupled microcavities
for which the growth conditions could be separately optimized for the organic and inorganic
well [28].

Microcavity-embedded organic QWs in the weak-coupling regime have already been
realized [30] and effects such as spectral narrowing and increased directionality of light
emission demonstrated. To achieve the strong-coupling regime, as observed for inorganic
QWs [29], with organic materials, we need molecular compounds combining a large
oscillator strength of the lowest-energy electronic transition with an absorption linewidth
smaller than the cavity mode splitting. Good candidates for such structures are thin-film
crystals of aromatic molecules like anthracene, tetracene, terrylene and many others. For
example, five monolayers of terrylene (d ' 50 Å) exhibit an oscillator strength per unit
area as large as 1015 cm−2, more than a hundred times that of a GaAs QW exciton.

In order to illustrate the results obtained for such a system [28], we use for the
material parameters data from available experiments or realistic estimates. We assume
that EF (k) = EC(k = 0) and EW(k = 0) = EC(k = 0)(1 + η), i.e. a Frenkel exciton
resonant with the cavity modeEC (we neglect the dispersion of the FE) and a Wannier
exciton with a fractional detuning ofη at k = 0. Using the reduced variablek = k/kcav
with kcav = π/L, we have for this case

EC(k)/EC(0) =
√

1+ k2
EW(k)/EW(0) = 1+ η + ak2

with a = h̄2k2
cav/2MEC(0). For resonance atEC(0) = 1.5 eV andε ' 10, we have

kcav = 2.4× 105 cm−1 and, using an exciton massM = 0.3m0 (m0 is the free-electron
mass),a = 10−5. The inorganic QW Rabi splitting11 is taken to be 3 meV; then, assuming
a ratio of the organic to the inorganic QW oscillator strengthF/f ' 60, we have for the
organic QW Rabi splitting12 ' 23 meV. The ratio12/11 ' 8 is by no means unusually
large and, as a matter of fact, even larger oscillator strengths can easily be attained with
many organic materials. For example, from the standard LT splittings of 0.08 meV in GaAs
(ε ' 12) and'50 meV for the lowest singlet exciton in tetracene (ε ' 9) [31], their
oscillator strength ratio is about 500. The large splittings12 ≈ 100 meV expected from
such estimates gave reasonable hope for reaching the strong-coupling regime even at room
temperature since the absorption linewidth can be as low as a few tens of meV in selected
organic systems.

In fact, very recently and for the first time, the strong-coupling regime in a MC with
an organic active layer has been observed [32] employing several organic compounds.
For example, using the organic semiconductor tetra-(2, 6-tert-butyl)phenol-porphyrin zinc
(4TBPPZn), a splitting12 ' 100 meV has been found. In this case, the thicknessL2 of
the active layer was about 1000̊A and, as12 ∝

√
L2, such an experimental value [32]

corresponds very well to the estimate of12 ' 25 meV [28] made forL2 ' 50 Å. In these
experiments [32], different dyes have been blended in a polymer matrix to realize active thin
films. In order to suppress the inhomogeneous broadening and also to further enhance the
mode splitting, it is very important to employ crystalline organic semiconductors. We are
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Figure 9. (a) Bare dispersion curves of a cavity photon, with the WE and FE normalized to
the cavity mode atk = 0. The FE exciton is resonant with the cavity mode and the WE has a
positive detuning. (b) Cavity polariton dispersion curves: for large wavevectors; branches 1, 2
and 3 turn into WE, FE and cavity photons, respectively. (c) Weighting coefficients of branch 1.
(d) Weighting coefficients of branch 2.

confident that in exactly this way it will be possible to observe the Frenkel–Wannier–Mott
exciton hybridization in an organic MC.

We assume such a situation in our demonstration calculations and neglect dissipation for
both bare excitonic states. The dispersion of cavity polaritonsEj(k) and of the weighting
coefficientsNF,W,C

j (k) (analogous toA andB of equation (1)) are shown in figure 9. From
figure 9(c) it is seen that the branch 1 (which at large wavevectors turns into a pure WE)
contains a major part of a FE state (|NF

1 |2) for k < 0.1. As seen from figure 9(d), the
branch 2 (which at large wavevectors turns into a pure FE) fork < 0.25 also retains a
major part of a FE state (|NF

2 |2) while exhibiting a large cavity photon component. The FE
component is crucial in assisting the inelastic relaxation that will be considered, whereas the
cavity photon component obviously has a large radiative width. Fork � 1 even for high
mirror reflectivities (1− R = 10−3), the cavity mode radiative lifetime is of orderτ ' 1
ps. The better mixing of branch 2 with the cavity photon means faster radiative decay in
a larger phase space. Such a short lifetime is only effective in a very narrow region of
phase space (k < 0.05kcav) in the case of typical inorganic QW splittings; such a region
can only be reached in about 100 ps due to slowed-down relaxation [33] in the flat part
of the dispersion curve, poorly coupled to the cavity mode. In our case, to populate the
states of branch 2 with a large radiative width (i.e., those withk < 0.2kcav), we can assume
that the parameters of the MC with two QWs are such that fork, k′ < 0.2kcav an inelastic
resonance condition is realized, i.e. that the energy differenceE1(k)−E2(k

′) is close to the
energy of some intramolecular optical phonon strongly coupled to excitons. For this case,
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the relaxation rate can be of order 10 ps or less [28], i.e. at least one order of magnitude
faster than for MC with an inorganic QW.

Summarizing, we have considered the new possibilities which may appear for micro-
cavities containing resonating organic and inorganic QWs. Although our estimates are
preliminary, we can expect in such structures a drastic reduction of the relaxation time of
excitons to give states having a large radiative width and a short fluorescence decay time.
We can also expect that the combination of electrical pumping of excitons in inorganic
QWs with the fast relaxation and fluorescence of excitons in organic QWs will open up a
new scenario of excitonic processes in microcavities, of interest for both basic science and
device applications.

3. Förster resonant energy transfer from a semiconductor QW to organics

In this section we study the situation in which the width of the excitonic resonance in the
organic material is larger than possible hybrid excitons’ frequency shifts or splitting (the
weak-coupling regime). Then, instead of a coherent hybridization of excitonic states the
dipole–dipole (F̈orster) energy transfer from the IQW to the organic material has to be
considered. This case was analysed in detail in references [34, 35].

The configuration that we consider consists of a semiconductor quantum well
sandwiched between two semiconductor barriers, the whole semiconductor structure
embedded in bulk-like organic material (for the sake of simplicity, we choose a symmetric
configuration and consider the organic material to be isotropic). The background dielectric
constant of the semiconductor material is taken to be real, whereas the total dielectric
constant of the organic material has both a real and an imaginary part in the frequency
region of interest. In fact, we are interested in an organic material having a broad absorption
band in the optical range overlapping with the two-dimensional Wannier–Mott exciton sharp
resonance. We consider both cases of a free Wannier–Mott exciton as well as of a localized
one due to the alloy disorder and QW width fluctuations.

The F̈orster-like rate of energy transfer due to the dipole–dipole interaction can be
calculated simply from the Joule losses [36] in the organic material. The details are presented
in reference [35]; here we merely summarize the general scheme. We neglect retardation, as
the typical exciton centre-of-mass in-plane wavevector is much larger than the wavevector
of the corresponding resonant light. We also consider only the linear regime in which
excitons can be described in the bosonic approximation. Then the transfer rate may be
calculated as follows.

Let the QW exciton with the energy ¯hω be described by the envelope functionψ(re, rh),
wherere, rh are the positions of the electron and the hole, and the normalization be∫

d3re d3rh |ψ(re, rh)|2 = 1. (62)

Then suppose that inside the QW we have the classical macroscopic quasi-stationary
polarization, oscillating with the frequencyω:

P (r, t) = dvcψ(r, r)e−iωt + CC (63)

wheredvc is the matrix element (16). Then, we solve the electrostatical problem (i.e.,
neglecting retardation) and find the corresponding electric field:

E(R, t) = E(R)e−iωt + CC. (64)
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The correct quantum mechanical energy transfer rate is given by the macroscopic formula

1

τ
= 1

2πh̄

∫
d3r Im εij (r, ω) Ei (r)E∗j (r) (65)

whereεij (r, ω) is the complex dielectric function of the acceptor organic medium. Both the
microscopic dipole approximation and the macroscopic description of the organic medium
are valid as long as the electric field obtained is slowly varying in space on the molecular
scale. This condition is fulfilled in all of the cases considered below, since the typical
wavevectors of excitons as well as e–h pairs in the QW are small compared to the inverse
lattice constant (and the localization length is larger than the lattice constant).

3.1. Free excitons

First, we specify the geometry of the problem, which is the same for all subsequent
sections. We consider a symmetric structure, consisting of a semiconductor QW of thickness
Lw between two barriers each of thicknessLb, the whole semiconductor structure being
surrounded by thick slabs of an organic material (in fact, we assume each slab to be
semi-infinite). We assume that in the frequency region considered here the semiconductor
background dielectric constantεb is real and the same for the well and the barrier, while
that of the organic material̃ε is complex. For simplicity we assume the organic material
to be isotropic (generalization to the anisotropic case is straightforward). So, the dielectric
constant to be used in equation (65), as well as in the Poisson equation below, is

εij (r) =
{
εbδij |z| < Lw/2+ Lb
ε̃δij |z| > Lw/2+ Lb

(66)

where thez-axis is chosen to be along the growth direction,z = 0 corresponding to the
centre of the QW.

We adopt a simplified microscopic quantum mechanical model of a quantum well
Wannier–Mott exciton, in which the polarization can be taken to vanish for|z| > Lw/2
and that inside the well to be given by

P (r) = dvc
√

2

πa2
B

2

Lw
cos2

(
πz

Lw

)
eik·r‖
√
S

(67)

where S is the in-plane normalization area,k is the in-plane wavevector of the centre-
of-mass motion,r‖ ≡ (x, y) is the in-plane component ofr and aB is the 2D 1s-exciton
Bohr radius [5]. It is not difficult to recognize the meaning of the factors constituting
(67), comparing it to (63). Namely,

√
[2/(πa2

B)] is the 1s wavefunction of the relative
motion of the electron and hole, taken atr‖ = 0; next comes the product of the lowest-
subband envelope functions for the electron and hole in the approximation of the infinitely
deep well and finally the wavefunction of the centre-of-mass motion with wavevectork,
normalized to the areaS. All of them are normalized according to (62). We choose as
x the direction of the in-plane component of the exciton dipole momentdvc, preferring to
consider the polarization with respect not to the wavevector, but to some fixed frame. This
little complication is justified since following the free exciton we intend to study the case
of the localized exciton, i.e., a system with broken 2D translational symmetry. Evidently,
we need to consider two cases:dvc being parallel and perpendicular to the QW plane. We
will refer to them asX- andZ-polarizations respectively.
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Figure 10. (a) The free-L-exciton (solid line) and free-Z-exciton (dashed line) lifetimesτ (ns)
versus the in-plane wavevectorK (cm−1). dvc/eaB = 0.1, Lw = 60 Å, Lb = 40 Å, εb = 6,
ε̃ = 4+ 3i. (b) The same, but forεb = 4, ε̃ = 6+ 3i.

The corresponding electric fieldE(r) = −∇ϕ(r) can be obtained from the solution of
the Poisson equation (the charge density beingρ(r) ≡ −∇ · P (r))

ε(z)∇2ϕ(r) = 4π∇ · P (r) (68)

with the appropriate boundary conditions atz = ±Lw/2 and atz = ±(Lw/2+ Lb), i.e.,
continuity of the tangential component of the electric fieldE(r) and of the normal component
of the electric displacementD(r) = ε(z)E(r). Writing ϕ(r) = φ(z)eik·r‖ , we have the
equation forφ(z):[

d2

dz2
− k2

]
φ(z) =

{
4πρ(z)/εb |z| < Lw/2

0 |z| > Lw/2
(69)
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where

ρ(X)(z) = ikxLwρ0(1+ cosqz) (70)

ρ(Z)(z) = −qLwρ0 sinqz (71)

ρ0 =
√

2

πa2
B

dvc√
SL2

w

q ≡ 2π/Lw (72)

with the boundary conditions thatφ(z) andε(z) dφ(z)/dz should be continuous at the four
interfaces. The corresponding solution in the organic material (forz > Lw/2 + Lb) is
given by

φ(z) = ρ0Cke−k(z−Lb−Lw/2) (73)

C
(X)

k = −
ikx
k

8π2q

k(k2+ q2)

sinh(kLw/2)

εb sinh(kLb + kLw/2)+ ε̃ cosh(kLb + kLw/2) (74)

C
(Z)

k =
8π2q

k(k2+ q2)

sinh(kLw/2)

εb cosh(kLb + kLw/2)+ ε̃ sinh(kLb + kLw/2) . (75)

Thus, the electric field penetrating the organic material is given by

E(r) = [−ik + kez]φ(z)eik·r‖ . (76)

Now we simply substitute this electric field into (65) and get the decay rate:

1

τ
= S

2πh̄
Im ε̃

∫ +∞
Lb+Lw/2

2k2|φ(z)|2 dz = Im ε̃

π2h̄

|dvc|2
a2
B

k|Ck|2
L4
w

(77)

where we have considered the absorption only atz > Lw/2+ Lb (considering also the
organic material inz < −Lw/2− Lb, τ would be half the size).

Figure 11. The free-L-exciton lifetime τ (ns) versus the in-plane wavevectorK (cm−1) for
three well widths:Lw = 20 Å (dotted line),Lw = 40 Å (dashed line),Lw = 60 Å (solid line).
The other parameters areLb = 40 Å, εb = 6, ε̃ = 4+ 3i.
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Figure 12. The free-L-exciton (solid line) and free-Z-exciton (dashed line) lifetimesτ (ns)
versus the barrier widthLb (Å). K = 106 cm−1, Lw = 60 Å, εb = 6, ε̃ = 4+ 3i.

We evaluateτ from equation (77) for parameters representative of II–VI semiconductor
QWs (analogously to section 2.1:εb ≈ 6, dvc ≈ 0.1eaB ; for the organic material we take
ε̃ = 4+ 3i). We consider two cases:dvc lying in the QW plane,k ‖ dvc (L-excitons)
and dvc perpendicular to the QW plane (Z-excitons). TakingLw = 60 Å, Lb = 40 Å,
we plot τL and τZ as functions ofk for εb = 6, ε̃ = 4+ 3i and εb = 4, ε̃ = 6+ 3i in
figures 10(a) and 10(b). It is seen from the plot that the lifetime does not depend drastically
on the polarization and the real parts of the dielectric constants. Figure 11 shows that the
dependence onLw is also weak, whileLb (figure 12), when it grows, gives an obvious
exponential factor (clearly seen from the hyperbolic functions in the denominators of (74),
(75)). The most interesting dependence is that onk. We see thatτ exhibits a minimum at
kmin ∼ 1/Lb. This dependence may be easily understood if one recalls that the dipole–dipole
interaction between two planes behaves like

V (k, z) ∼ ke−kz (78)

which, when substituted into the Fermi Golden Rule gives the correct asymptoticsτ ∼ 1/k
at k→ 0 and exponential growth atk→∞.

Typical values ofk for the quasi-thermalized exciton distribution with temperature∼
100 K are∼3 × 106 cm−1. We see that the corresponding lifetimes (tens of pico-
seconds) are much less than the exciton recombination rate which is about 100–200 ps in
II–VI semiconductor QWs, as reported by different authors ([7] and references therein, [37]).
Thus, the dipole–dipole transfer mechanism, considered above, proves to be efficient enough
to transfer a large fraction of the semiconductor excitation energy to the organic medium.
Moreover, the intraband relaxation of excitons due to the acoustic phonon scattering occurs
on timescales of the order of 20–30 ps at 10 K [37], which is larger than the minimal transfer
lifetime, obtained here (less than 10 ps forkmin ∼ 106 cm−1). This makes it reasonable
to excite the QW in such a way as to produce the initial nonequilibrium distribution of
excitons withk = kmin, tuning the frequency of the excitation pulse to exceed the energy
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Eexc(kmin) of the exciton withk = kmin by one LO-phonon frequency�LO (since in II–VI
semiconductors the free-carrier-to-exciton relaxation is governed mainly by LO-phonon
scattering and happens in times of about 1 ps [37–40]), or an integer multiple of�LO ,
if the exciton binding energy is larger than ¯h�LO . A numerical estimate for ZnSe gives
Eexc(kmin)−Eexc(k = 0) ∼ 1 meV, whileh̄�LO ≈ 31 meV [37], so the kinetics of excitons
at k ∼ kmin is governed mainly by the acoustic phonons.

Figure 13. As figure 11, but for the III–V semiconductor compounds (εb ≈ 11, dvc ≈ 0.05eaB ,
all other parameters being the same as in figure 11).

Analogous calculations may be performed for the case of III–V semiconductor materials.
We takeεb ≈ 11, dvc ≈ 0.05eaB and plot theL-exciton lifetime versus the wavevectork
for several values ofLw (figure 13, analogous to figure 10 for II–VI materials). All of the
other parameters are the same as in figure 10. We see that the lifetime is longer than that in
figure 10 by about an order of magnitude, which is due to the larger values ofaB andεb.
However, the exciton recombination time in III–V materials is also larger (0.5–1 ns [41]),
so the energy transfer discussed here is still efficient enough.

3.2. Localized excitons

Now we turn to the situation in which the QW width fluctuations and the alloy disorder
localize the wavefunction of the centre-of-mass exciton motion. If we denote it by8(r‖),
which is no longer just a plane wave, the corresponding polarization is given by

P (r) = dvc
√

2

πa2
B

2

Lw
cos2

(
πz

Lw

)
8(r‖) (79)

which implies that8(r‖) is normalized according to∫
d2r‖ |8(r‖)|2 = 1. (80)
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The solution of the Schrödinger equation for a particle in the random potential, caused by
the QW width fluctuations and the alloy disorder, is beyond the scope of the present paper
(much work has been done in this field; e.g. see [42] and references therein). We can
only state some general properties that8(r‖) should have: (i) it should be localized within
some distanceL & Lw and as it corresponds to a ground state in some potential well;
(ii) it should be smooth and without nodes. As a consequence, its spatial Fourier expansion
should contain mainly the components with wavevectorsk . 1/L.

Expanding the wavefunction8(r‖), the charge densityρ(r) and the potentialϕ(r) into
plane waves

8(r‖) =
∫

d2k

(2π)2
8keik·r‖

ρ(r‖) =
∫

d2k

(2π)2
ρk(z)e

ik·r‖

ϕ(r) =
∫

d2k

(2π)2
ϕk(z)e

ik·r‖

(81)

we again obtain equation (69), but the charge density is given by

ρ
(X)

k (z) = ikxLwρ̃0L8k(1+ cosqz) (82)

ρ
(Z)

k (z) = −qLwρ̃0L8k sinqz (83)

ρ̃0 =
√

2

πa2
B

dvc

LL2
w

. (84)

The solution is

ϕk(z) = ρ̃0L8kCke−k(z−Lb−Lw/2) (85)

with the sameCk, given by (74), (75). For the decay rate we obtain

1

τ
= Im ε̃

2πh̄

∫ +∞
Lb+Lw/2

dz
∫

d2k

(2π)2
2k2|ϕk(z)|2 (86)

from which

1

τ
= Im ε̃

π2h̄

|dvc|2
a2
B

1

L4
w

∫
d2k

(2π)2
k|8k|2|Ck|2. (87)

It is possible to get some information about the decay rate (86) based only on general
properties of the wavefunction, mentioned above. We have three length scales in our
problem: Lw, Lb andL. First, we have the conditionLw . L. Since wavevectors with
kL & 1, being cut off by|8k|2, do not contribute to the integral, we may setkLw → 0.
The subsequent analysis depends on the relation betweenLb andL.

If Lb � L, we may putkLb → 0 as well. Then we have

C
(X)

k

L2
w

−→ −2π i

ε̃

kx

k

C
(Z)

k

L2
w

−→ 2π

εb
(88)

and the integral may be estimated as

1

τX
= A2

h̄

Im ε̃

|ε̃|2
|dvc|2
a2
B

1

L

1

τZ
= A4

h̄

Im ε̃

ε2
b

|dvc|2
a2
B

1

L
(89)

up to a numerical factorA ∼ 1, determined by the detailed shape of8k. We have set the
average value ofk over the wavefunction8k to be 1/L and, if for theX-polarization we
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Figure 14. The localized-X-exciton lifetimeτ (ns) versus the localization lengthL (Å) (solid
line) along with the limiting casesL� Lb andL� Lb (dashed lines).Lw � L, Lb = 40 Å,
εb = 6, ε̃ = 4+ 3i.

assume8k to be cylindrically symmetric (which may be considered as the average over the
realizations of disorder), then the numerical factor is the same for both cases.

In the opposite limit,Lb � L (which also impliesLb � Lw), we may set8k = 8k=0

since the values ofk, contributing to the integral, are determined byCk (namely,k . 1/Lb),
which in this limit takes the form

C
(X)

k

L2
w

−→ − ikx
k

4π

(ε̃ + εb)ekLb + (ε̃ − εb)e−kLb (90)

C
(Z)

k

L2
w

−→ 4π

(ε̃ + εb)ekLb − (ε̃ − εb)e−kLb . (91)

Estimating the integral, we have

1

τX
= A 1

πh̄

Im ε̃

|ε̃ + εb|2
|dvc|2
a2
B

|8k=0|2
L3
b

(92)

where|8k=0|2 ∼ L2, which follows from the normalization condition. The expression for
1/τZ differs from this by an additional factor of 2 and the factorA may be different in the
two cases. It is determined by the values ofε̃, εb and is bounded by

A =
∫ ∞

0

ξ2 dξ

|(εb/|εb + ε̃|) sinhξ + (ε̃/|εb + ε̃|) coshξ |2 (93)

π2

12
=
∫ ∞

0

ξ2 dξ

cosh2 ξ
< A <

∫ ∞
0

ξ2 dξ

sinh2 ξ
= π2

6
. (94)

So we see that atL � Lb the decay rate is proportional toL2, while atL � Lb it is
proportional toL−1; therefore it has a maximum at someL ∼ Lb. This is in agreement with
the results of the previous section, since the plane waves, giving the largest contribution to
the wavefunction8(r‖) and thus determining the decay rate, have values of the wavevector
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Figure 15. Localized-X-exciton (solid line) and localized-Z-exciton (dashed line) lifetimesτ
(ns) versus the localization lengthL (Å). Lw = 10 Å, Lb = 40 Å, εb = 6, ε̃ = 4+ 3i.

of the order ofk ∼ 1/L and we have seen that the wavevectors corresponding to the shortest
lifetimes werekmin ∼ 1/Lb.

To illustrate these considerations, we choose a specific example of the localized
wavefunction—that of the ground state in the isotropic parabolic potential:

8k =
√

4πLe−k
2L2/2 (95)

which obviously has all of the necessary features mentioned at the beginning of this section.
For this wavefunction the integral in (86) may be evaluated numerically for arbitrary
parametersL, Lw, Lb (we recall that the only physically relevant ones areL & Lw).
The results of the calculation (τ versusL) are plotted in figures 14, 15 along with the
asymptotic dependencies forLb = 40 Å, εb = 6, ε̃ = 4+ 3i (we have setLw → 0 for the
plots in figure 14, but a more specific valueLw = 10 Å was chosen for figure 15). In the
limit L� Lb, the coefficientA is

√
π/2, while forL� Lb, A was calculated numerically,

as given by (93).
We also plot the dependence, analogous to that in figure 15, for parameters typical of

III–V semiconductors:dvc/eaB = 0.05 andεb = 11 (figure 16); analogously to the previous
section, we obtain larger lifetimes than those for II–VI semiconductors.

Calculations analogous to those for free and localized excitons may also be performed
for the case in which populations of free electrons and holes rather than bound excitons
are present. First, the decay rate of a single free electron–hole pair is determined from
equation (65), starting from the wavefunction being the direct product of two 2D plane
waves. Then the expression obtained has to be averaged over the proper momentum
distributions for electrons and holes. This was done in the approximation of an ideal
quasi-equilibrium Fermi gas, and the dipole–dipole lifetimes obtained turn out to be as long
as 300 ps (and larger) for II–VI semiconductors and about an order of magnitude larger for
III–V semiconductors.

Summarizing the results of this section, we can say that the kinetics of the initial free-
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Figure 16. As figure 15, but for the III–V semiconductor compounds, other parameters being
the same as for figure 15.

carrier population (produced, e.g., by the electrical pumping) is not significantly changed
by the presence of the organic medium, since the energy transfer from free carriers turns
out to be slower than the process of exciton formation (∼1 ps). On the other hand, the
subsequent evolution of bound excitons is strongly affected by the presence of the organic
medium. In an isolated QW, excitons recombine for several hundred ps. In contrast to this,
excitons coupled to the organic medium efficiently transfer the larger part of their energy to
the organic molecules before they recombine inside the QW. For quantum wells, based on
the II–VI semiconductors and in a realistic geometry, such transfer may occur on timescales
of the order of 10 ps. This simple physical picture shows that the system studied here may
be promising for optical devices based on hybrid organic–inorganic structures, combining
good transport properties of semiconductors and large oscillator strengths characteristic of
organic materials to achieve efficient electroluminescence.

4. Conclusions

The method of OMBD combined with a careful substrate preparation and sample
characterization has been successful in growing layered systems including organic crystalline
materials (e.g., tetracene, perylene, fullerene, PTCDA). There is little doubt that in the future
the number of molecular species used will rapidly increase and that a large flexibility in the
design of novel types of structure will be achieved. In particular, hybrid multilayer systems
containing layers of organic and inorganic materials are widely used in different optical
devices [3]. However, the situation studied in this review, namely, that in which excitons
in OQW and IQW are resonant, is especially interesting, since it leads to several types of
new phenomenon.

We have discussed the linear and nonlinear optical properties of novel hybrid excitons
in organic–inorganic heterostructures. With respect to those of the usual semiconductor
quantum wells, a very strong enhancement of both the linear and nonlinear parts of the
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susceptibility is predicted. These results are rationalized in terms of the large oscillator
strength of Frenkel excitons and the low saturation density of Wannier excitons: these
two characteristics are exhibited by the hybrid resonances simultaneously. If successfully
synthesized, structures of the type considered here would exhibit pronounced nonlinearities
of potential technological interest. Moreover, the hybrid excitons are a promising system as
regards possible novel electro-optical and magneto-optical properties. We have also shown
that, due to the parity breaking in the hybrid organic–inorganic structure, second-order
nonlinearity is present, and thus there exists the possibility of second-harmonic generation.
We have also considered the new possibilities which may appear for microcavities containing
resonating organic and inorganic QWs. In such structures we can expect a drastic reduction
of the relaxation time of excitons to produce states having a large radiative width and a
short fluorescence decay time.

The case of strongly broadened excitonic resonances in the organic material was also
considered. In this case the resonant dipole–dipole coupling leads to efficient Förster energy
transfer from the IQW to the organic medium. We can also expect that the combination of
electrical pumping of excitons in inorganic QWs with the fast relaxation and fluorescence
of excitons in organics will open up a new scenario of excitonic processes, of interest for
both basic science and device applications.

More detailed theoretical calculations are needed, but probably the crucial factor will be
the technological progress in the synthesis of such structures. We believe that this is a very
promising field of research and hope that the experimental efforts to grow and investigate
these novel systems will be successful.
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